Synthesis and Characterization of ZnAl2O4 Nanopowders by a Reverse Micelle Processing

  • Hoon, Son-Jung (Department of Advanced Materials Science and Engineering, Changwon National University) ;
  • Sohn, Jeongho (School of Port and Logistics, Kaya University) ;
  • Shin, Hyung-Sup (Department of Optometry, Kaya University) ;
  • Bae, Dong-Sik (Department of Advanced Materials Science and Engineering, Changwon National University)
  • Received : 2015.05.13
  • Accepted : 2015.09.21
  • Published : 2015.11.27


Using reverse micelle processing, $ZnAl_2O_4$ nanopowders were synthesized from a mixed precursor(consisting of $Zn(NO_3)_2$ and $Al(NO_3)_3$). The $ZnAl_2O_4$ was prepared by mixing the aqueous solution at a molar ratio of Zn : Al = 1 : 2. The average size and distribution of the synthesized powders with heat treatment at $600^{\circ}C$ for 2 h were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized powders increased with increasing water to surfactant molar ratio. The XRD diffraction patterns show that the phase of $ZnAl_2O_4$ was spinel(JCPDS No. 05-0669). The synthesized and calcined powders were characterized using a thermogravimetric - differential scanning calorimeter(TG-DSC), X-ray diffraction analysis (XRD), and high resolution transmission electron microscopy(HRTEM). The effects of the synthesis parameter, such as the molar ratio of water to surfactant, are discussed.


Supported by : National Research Foundation of Korea(NRF)


  1. S. Bid and S. K. Pradan, Mater. Chem. Phys., 82, 27 (2003).
  2. R. E. Ayala and D. W. Marsh, Ind. Chem. Res., 30, 55 (1991).
  3. R. Roesky, J. Weiguny, H. Bestgen and U. Dingerdissen, Appl. Catal. A: General, 176, 213 (1999).
  4. S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc., 81, 649 (1998).
  5. W. S. Tzing and W. H. Tuan, J. Mater. Sci. Lett., 15, 1395 (1996).
  6. A. R. Phani, M. Passacantando and S. Santucci, Mater. Chem. Phys., 68, 66 (2001).
  7. M. Zawadzki, J. Wrzyszcz, W. Strek and D. Hreniak, J. Alloy. Compd., 323-324, 279 (2001).
  8. T. K. Shioyama, U.S. Patent 4, 260, 845, 1981.
  9. G. Aquilar-Rios, M. Valenzuela, P. Salas, H. Armendariz, P. Bosch, G. Del Toro, R. Sila, V. Bertin, S. Castillo and A. I. Schifter, Appl. Catal. A: General, 127, 65 (1995).
  10. T. El-Nabarany, A. A. Attia and M. N. Alayn, Mater. Lett., 24, 319 (1995).
  11. H. Grabowska, W. Mi ta, J. Trawczy ski, J. Wrzyszcz and M. Zawadzki, Appl. Catal. A: General, 220, 207 (2001).
  12. K. Sampath and F. Cordano, J. Am. Ceram. Soc., 81, 649 (1998).
  13. G. F. Hetting, H. Worl, H. H. Weiter, Z. Anorg. Allg. Chem., 283, 207 (1956).
  14. C.O. Arean, B. S. Sintes, G. T. Palomino, C. M. Carbonell, E. E. Platero and J. B. P. Soto, Microporous Mater., 8, 187 (1997).
  15. M. A. Valenzuela, P. Bosh, G. Aguilar-Rios, A. Montoya and I. Schifter, J. Sol-Gel Sci. Technol., 8, 107 (1997).
  16. M. Zawadzki and J. Wrzyszcz, Mater. Res. Bull., 35, 109 (2000).
  17. Z. Chen, E. Shi, Y. Zheng, W. Li, N.Wu and W. Zhong, Mater. Lett., 56, 601 (2002).
  18. D. S. Bae, S. W. Park, K. S. Han and J. H. Adair, Met. Mater., Int., 7, 399 (2001).
  19. Pileni, M. P., Structure and Reactivity in Reverse Micelles, Elsevier, Amsterdam 1989.
  20. B. K. Paul and S. P. Moulik, J. Dispersion Sci. Technol., 18, 301 (1997).
  21. Ossed-Asare, K., and Arriagada, F. J., Ceram. Trans., 12, 3 (1990).
  22. Pillai, V., Kumar, P., Hou, M. J., Ayyub, P. and Shah, D. D., Adv. Colloid Interface Sci., 55, 241 (1995).
  23. Ph. Monnoyer, A. Fonseca and J. B. Nagy, Colloid Surf. A: Physicochem. Eng. Aspects., 100, 233 (1995).
  24. Y. Yafet and C. Kittel, Phys. Rev., 87, 290 (1952).
  25. C. Petit, P. Lixon and M. P. Pileni, J. Phys. Chem., 97, 12974 (1993).