Korean Journal of Materials Research (한국재료학회지)
- Volume 25 Issue 11
- /
- Pages.612-615
- /
- 2015
- /
- 1225-0562(pISSN)
- /
- 2287-7258(eISSN)
DOI QR Code
On-Site Corrosion Behavior of T91 Steel after Long-Term Service in Power Plant
- He, Yinsheng (School of Nano & Advanced Materials Engineering, Changwon National University) ;
- Chang, Jungchel (Technology Policy and Planning Department, Korea Electric Power Corporation) ;
- Lee, Je-Hyun (School of Nano & Advanced Materials Engineering, Changwon National University) ;
-
Shin, Keesam
(School of Nano & Advanced Materials Engineering, Changwon National University)
- Received : 2015.07.27
- Accepted : 2015.10.01
- Published : 2015.11.27
Abstract
In this work, on-site corrosion behavior of heat resistant tubes of T91, used as components of a superheater in a power plant for up to 25,762 h, has been investigated using scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscattered diffraction(EBSD), with the objectives of studying the composition, phase distribution, and evolution during service. A multi-layer structure of oxide scale was found on both the steamside and the fireside of the tube surface; the phase distribution was in the order of hematite/magnetite/spinel from the outer to the inner matrix on the steamside, and in the order of slag/magnetite/spinel from the outer to the inner matrix on the fireside. The magnetite layer was found to be rich in pores and cracks. The absence of a hematite layer on the fireside was considered to be due to the low oxygen partial pressure in the corrosion environment. The thicknesses of the hematite and of the slag-deposit layer were found to exhibit no significant change with the increase of the service time.
File
Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- L. Tan, X. Ren and T. R. Allen, Corro. Sci., 52, 1520 (2010). https://doi.org/10.1016/j.corsci.2009.12.032
- K. Natesan and J. H. Park, Int. J. Hydrogen Energy, 32, 3689 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.038
- S. R. J. Saunders, M. Monteiro and F. Rizzo, Prog. Mater. Sci., 53, 775 (2008). https://doi.org/10.1016/j.pmatsci.2007.11.001
- P. Ampornrat and G. S. Was, J. Nucl. Mater., 371, 1 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.023
- S. C. Srivastava and K. M. Godiwalla, J. Mater. Sci., 32, 835 (1997). https://doi.org/10.1023/A:1018585129341
- K. Song, T. Y. Cho, J. H. Yoon, C. G. Lee, K. Shin, S. H. Lee, K. W. Urm, J. W. Lee and I. S. Kim, Met. Mater. Int., 14, 721 (2008). https://doi.org/10.3365/met.mat.2008.12.721
- Y. Chen, K. Sridharan and T. Allen, Corro. Sci., 48, 2843 (2006). https://doi.org/10.1016/j.corsci.2005.08.021
- K. Yin, S. Qiu, R. Tang, Q. Zhang and L. Zhang, J. Supercrit. Fluids, 50, 235 (2009). https://doi.org/10.1016/j.supflu.2009.06.019
- L. Tan, Y. Yang and T. R. Allen, Corro. Sci., 48, 3123 (2006). https://doi.org/10.1016/j.corsci.2005.10.010
- X. Ren, K. Sridharan and T. R. Allen, J. Nucl. Mater., 358, 227 (2006). https://doi.org/10.1016/j.jnucmat.2006.07.010
- X. Zhong, X. Wu and E. H. Han, J. Supercrit. Fluids, 72, 68 (2012). https://doi.org/10.1016/j.supflu.2012.08.015
- Y. He, J. Chang, J. Dong and K. Shin, Adv. Sci. Lett., 4, 1416 (2011). https://doi.org/10.1166/asl.2011.1697
- C. G. Panait, W. Bendick, A. Fuchsmann, A.-F. Gourgues-Lorenzon and J. Besson, Int. J. Pres. Ves. Pip., 87, 326 (2010). https://doi.org/10.1016/j.ijpvp.2010.03.017