Effect of Boron on the Manufacturing Properties of Ti-2Al-9.2Mo-2Fe Alloy

Ti-2Al-9.2Mo-2Fe 합금의 후공정 특성에 미치는 보론의 영향

  • Kim, Tae-Yong (Korea Institute of Material Science, Titanium Department) ;
  • Lim, Ka-Ram (Korea Institute of Material Science, Titanium Department) ;
  • Lee, Yong-Tai (Korea Institute of Material Science, Titanium Department) ;
  • Cho, Kyung-Mok (Pusan University, School of Material Science and Engineering) ;
  • Lee, Dong-Geun (Sunchon National University, Materials Metallurgical Engineering)
  • 김태용 (한국기계연구원부설 재료연구소) ;
  • 임가람 (한국기계연구원부설 재료연구소) ;
  • 이용태 (한국기계연구원부설 재료연구소) ;
  • 조경목 (부산대학교 재료공학과) ;
  • 이동근 (순천대학교 신소재공학과)
  • Received : 2015.08.12
  • Accepted : 2015.10.12
  • Published : 2015.11.27


Titanium has many special characteristics such as specific high strength, low elastic modulus, excellent corrosion and oxidation resistance, etc. Beta titanium alloys, because of their good formability and strength, are used for jet engines, and as turbine blades in the automobile and aerospace industries. Low cost beta titanium alloys were developed to take economic advantage of the use of low-cost beta stabilizers such as Mo, Fe, and Cr. Generally, adding a trace of boron leads to grain refinement in casted titanium alloys due to the pinning effect of the TiB phases. This study analyzed and evaluated the microstructural and mechanical properties after plastic deformation and heat treatment in boron-modified Ti-2Al-9.2Mo-2Fe alloy. The results indicate that a trace of boron addition made grains finer; this refinement effect was found to be maintained after subsequent processes such as hot forging and solution treatment. This can effectively reduce the number of required manufacturing process steps and lead to savings in the overall cost as well as low-cost beta elements.


  1. S. Ankem and C. A. Green, Mater. Sci. Eng. A, 263, 127 (1999).
  2. R. R. Boyer, in: D. Eylon, R. R. Boyer, D. A. Koss (Eds.), Beta Titanium Alloys in the 1990's, Warrendale, PA, TMS (The Minerals, Metals & Materials society), 335-46 (1993).
  3. J. Y. Jung, W. J. Park and J. K. Park, J. Korean Inst. Met. Mater. 38, 234 (2000).
  4. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li and Y. Li, Materials, 7, 1709 (2014).
  5. Pallab Majumdar, Micron, 43, 876 (2012).
  6. K. Otsuka and X. Ren, Progr. Mater. Sci., 50, 511 (2005).
  7. B. Cherukuri, R. Srinivasan, S. tamirisakandala and D.B Miracle, Scripta Mater., 60, 496 (2009).
  8. C. Li, D-G. Lee, X. Mi, W. Ye, S. Hui and Y. T. Lee, J. Alloy. Compd., 549, 152 (2013)
  9. P. E. Markovsky, Yu. V. Matviychuk and V. I. Bondarchuk, Mater. Sci. Eng. A 559, 782 (2013).
  10. O. M. Ivasishin, P. E. Markovsky, S. L. Semiatin and C. H. Ward, Mater. Sci. Eng. A, 405, 296 (2005).
  11. T. M. Godfrey, P. S. Goodwin and C. M. Ward-Close, Adv. Eng. Mater., 2, 85 (2000).<85::AID-ADEM85>3.0.CO;2-U
  12. K. S. Ravi Chandran, D. B. Miracle, J. Miner. Met. Mater. Soc., 56, 32 (2004).
  13. J. J. Ahn, D. -G. Lee, K. R. Lim, T. Y. Kim, Y. T. Lee and S. Y. Yoon, J. Korean Inst. Met. Mater. 53, 380 (2015).
  14. M. J. Bermingham, S. D. McDonald, K. Nogita, D. H. St. John and M. S. Dargusch, Scripta Mater., 59, 538 (2008).
  15. S. Tamirisakandala, R. B. Bhat, J. S. Tiley and D. B. Miracle, J. Mater. Eng. Perform., 14, 741 (2005).