Design of Nickel Alloys Using the Theoretical Values Calculated from the Electronic State Energies

에너지 전자상태 계산으로 도출된 이론값을 이용한 니켈 합금 설계

  • 백민숙 (순천대학교 미래전략신소재공학과) ;
  • 강법성 ((주)삼우ECO) ;
  • 백경철 ((주)삼우ECO) ;
  • 김병일 (순천대학교 미래전략신소재공학과) ;
  • 윤동주 (순천대학교 차세대전략산업용 희유자원실용화센터)
  • Received : 2015.07.02
  • Accepted : 2015.10.13
  • Published : 2015.11.27


Super alloys, which can be divided into three categories, i.e. Ni-base, Co-base, and Fe-base alloys, are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, their chemistry and processing parameters need to be carefully designed. In this study, we designed a new Ni alloy to prevent corrosion due to water vapor and gases at high temperatures. The new alloy was designed using the theoretical value of the resulting energy electronic state calculation($DV-X{\alpha}$ method). The components that were finally used were Cr, Mo, and Ti, with Ni as a base. For these alloys, elements were selected in order to compare their values with that of the average theoretical basis for an Inconel 625 alloy. Finally, two kinds of Ni alloy were designed: Ni-28Cr-4Mo-2Ti and Ni-20Cr-10Mo-1Ti.


  1. M. Donachie and S. Donachie, Superalloys A Technical Guide, Second Edition, p. 11-39, ASM International, U.S.A. (2001).
  2. Kenneth A. Green, Superalloys 2004, p. 15-115, TMS, U.S.A. (2004).
  3. J. R. Davis, Nickel Cobalt and Their Alloys, p. 3-6, 30, 127-137 ASM International, U.S.A. (2000).
  4. M. Morinaga and S. Kamado, Modelling Simul, Mater. Sci. Eng., 1, 151 (1993).
  5. N. Morinaga and N. Yukawa, Comput. Aid. Innov. New Mater., 1, 803 (1990).
  6. M. Morinaga, Bull. Soc. Discret. Var. Xa, 6, 424 (1994)
  7. M. Morinaga, Y. Murata and H. Yukawa, Adv. Sci. Technol., 18, 427 (1998).
  8. D. E. Ellis, H. Adachi and F. W. Averill. Surf. Sci., 58, 496 (1976).
  9. H. Adachi, M. Tsukada and C. Satoko, J. Phys. Soc. Jpn., 45, 875 (1978).
  10. Y. S. Kim, H. C. Ko and H. S. Park, Basic Quantum Mater. Sci., p.40,41, Hanrimwon, Korea (2000).
  11. K. Matsugi, Y. Murata, M. Morinaga and N. Yukawa, Mater. Sci. Eng., A, 172, 101 (1993).
  12. J. S. Zhang, Z. Q. Hu, Y. Murata, M. Morinaga and N. Yukawa, Metall. Trans. A, 24A, 2443 (1993).
  13. Y. MuraTa, S. Miyazaki and M. Morinaga, Materi. Adv. Power Eng., 1994, 909 (1994).
  14. M. Morinaga and R. Ninomiya, Mater. Res. Soc. Jap., 16, 195 (1993).
  15. M. S. Baek, D. J. Yoon, D. H. Won and B. I. Kim, Korean J. Met. Mater. 49, 739 (2011).
  16. M. S. Baek, D. J. Yoon, K. B. Kim, Y. J. Kim and B. I. Kim, Korean J. Met. Mater. 51, 461 (2013).
  17. R. S. Mulliken, J. Chem. Phys., 23 1833, 1841, 2338 and 2343 (1955).
  18. Y. S. Na, J. Y. KiM, J. H. Lee and N. K. Park, Transactions of the KIMM, 33, 167 (2003).
  19. N. K. Park, J. Korean Soc. Heat Treatment, 16, 341 (2003).
  20. C. H. Chun, G. M. Kim D. S. KIM, J. C. Jang and J. C. Kim, J. Korea Soc. Power Sys. Eng., 7, 18 (2003).
  21. J. I. Youn, B. I. Kang, B. J. Choi and Y. J. Kim, J. Korea Foundry Soc., 33, 215 (2013).
  22. T. B. Massalski, Binary Alloy Phase Diagrams, scecond edition, p.9023-9037, ASM Int. U.S.A. (1990).
  23. P. Villars, A. Prince and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, p.1293-1446, ASM International, U.S.A (1995).