Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber

각종 셀룰로오스 나노섬유의 첨가가 닥나무 인피섬유 시트의 특성에 미치는 영향

Han, Song-Yi;Park, Chan-Woo;Kim, Bo-Yeon;Lee, Seung-Hwan

  • Received : 2015.08.05
  • Accepted : 2015.09.08
  • Published : 2015.11.25


Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.


paper mulberry bast fiber;cellulose nanofiber;lignocellulose nanofiber;holocellulose nanofiber;TEMPO-oxidated nanofiber;cellulose nanocrystal


  1. Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87: 963-979.
  2. Abitbol, T., Kloser, E. Gray, D.G. 2013. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2): 785-794.
  3. Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., Doublier, J.L. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydrate Polymers 80: 677-686.
  4. Azeredo, H.M.C. 2009. Nanocomposites for food packaging applications. Food Research International 42: 1240-1253.
  5. Cherian, B.M., Leao, A.L., Souza, S.F., Costa, L.M.M., Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R., Thomas, S. 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 86: 1790-1798.
  6. Choi, T.H., Cho, N.S. 1996. New korean traditional papermaking from paper mulberry (I) - Pulping characteristics of Broussonetia kazinoki Siebold -, Journal of Korea TAPPI 28(1): 49-59.
  7. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65.
  8. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A. 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10: 162-165.
  9. Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.
  10. Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9: 1579-1585.
  11. Isogai, A. 2013. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59: 449-459.
  12. Iwamoto, S., Nakagaito, A.N., Yano, H. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 89: 461-466.
  13. Iwamoto, S., Yamamoto, S., Lee, S.H., Ito, H., Endo, T. 2014. Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7: 6919-6929.
  14. Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., Sheltami, R. M. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fiber. Cellulose 19: 855-866.
  15. Kwon, O.H., Kim, H.C. 2011. Preliminary study on automation of bark peeling process for paper mulberry, Journal of Korea TAPPI 43(4): 59-66.
  16. Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764.
  17. Lee, H.V., Hamid, S.B.A., Zain, S.K. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal 2014: 1-20.
  18. Lee, M.G., Yun, S.R., Kim, M.J. 2006. Dyeing of Hanji using Kenaf and improvement of printability. Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference 10: 233-239.
  19. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology 101: 7218-7223.
  20. Lee, S.H., Inoue, S., Teramoto, Y., Endo, T. 2010. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: Effect of hot-compressed water treatment. Bioresource Technology 101: 9645-9649.
  21. Li, M.C., Wu, Q., Song, K., Qing, Y., Wu, Y. 2015. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl. Mater. Interfaces 7: 5006-5016.
  22. Lu, P., Hsieh, Y.L. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers 82: 329-336.
  23. Nogi, M., Yano, H. 2008. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20: 1849-1852.
  24. Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Composites Science and Technology 71(10): 1342-1347.
  25. Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. J. Korean Wood Sci. Technol. 43(1): 17-24.
  26. Park, S.C., Lim, H.A., Oh, S.W. 2014. Study of functional of hanji using ceramic from Broussonetia kazinoki Sieb. Journal of Agriculture & Life Science 48(3): 53-61.
  27. Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cai, Z., Wu, Y. 2013. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers 97: 226-234.
  28. Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8: 2485-2491.
  29. Salas, C., Nypelo, T., Rodriquez-Abreu, C., Carrillo, C., Rojas, O.J. 2014. Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science 19: 383-396.
  30. Siqueira, G., Bras, J., Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765.
  31. Siro, I., Plackett, D. 2010. Microfibrillated cellulsoe and new nanocomposite materials: A review. Cellulose 17: 459-494.
  32. Yoon, S.L., Kim, H.J. 2002. Manufacturing of color hanji using bast fibers stained dyed by two reactive dyes. Journal of Korea TAPPI 34(4): 44-50.


Supported by : 산림청