DOI QR코드

DOI QR Code

Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films

Hydroxypropyl cellulose/TEMPO-산화 처리된 셀룰로오스 나노섬유를 이용한 복합필름의 기계적 및 열적 특성

  • Received : 2015.08.07
  • Accepted : 2015.09.09
  • Published : 2015.11.25

Abstract

Hydroxypropyl cellulose (HPC) composite films filled with TEMPO-oxidized cellulose nanofibrils (TOCN) were prepared in this study. In order to investigate mechanical and thermal properties of HPC/TOCN composite films, tensile strength and thermogravimetric analysis (TGA) wer performed. As the loading level of TOCN increased, the tensile strength and modulus increased significantly. However, thermal stability of HPC/TOCN composite films was not related to the loading levels of the TOCN.

Keywords

Hydroxypropyl cellulose;composite films;tensile properties;thermal stability;TEMPO-oxidized cellulose nanofibrils

References

  1. Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of Korean Wood Science and Technology 38(6): 587-601. https://doi.org/10.5658/WOOD.2010.38.6.587
  2. Darja J., Robert V., Vanja K. 2015. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibersusing laccase/TEMPO mediated oxidation. Carbohydrate Polymers 116: 74-85. https://doi.org/10.1016/j.carbpol.2014.03.014
  3. Gilberto S., Julien B., Alain D. 2010. Cellulosic Bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765. https://doi.org/10.3390/polym2040728
  4. Hayaka F., Tsuguyuki S., Akira I. 2013. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers 93(1): 172-177. https://doi.org/10.1016/j.carbpol.2012.04.069
  5. Jang, J.H., Lee S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. Journal of Korean Wood Science and Technology 42(6): 700-707. https://doi.org/10.5658/WOOD.2014.42.6.700
  6. Lee S.Y., Chun S.J., Kang I.A., Park J.Y. 2009a. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. Journal of industrial and engineering chemistry 15(1): 50-55. https://doi.org/10.1016/j.jiec.2008.07.008
  7. Lee, S.Y., Mohan D.J., Kang I.A., Doh G.H., Lee S, Han S.O. 2009b. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers 10(1): 77-82. https://doi.org/10.1007/s12221-009-0077-x
  8. Masayuki H., Naoyuki T., Tsuguyuki S., Akira I. 2009. Oxidation of regenerated cellulose with $NaClO_2$ catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydrate Polymers 78: 330-335. https://doi.org/10.1016/j.carbpol.2009.04.012
  9. Nathalie L., Isabelle D., Alain D., Julien B. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  10. Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. J. Korean Wood Science and Technology 42(2): 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
  11. Reina T., Tsuguyuki S., Akira I. 2012. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/$NaClO_2$ systems in water at pH 4.8 or 6.8. International Journal of Biological Macromolecules 51(3): 228-234. https://doi.org/10.1016/j.ijbiomac.2012.05.016
  12. Shibata I., Isogai A. 2003. Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10(2): 151-158. https://doi.org/10.1023/A:1024051514026
  13. Gamelas J.F.G., Pedrosa, J., Lourenco A.F.L., Mutje, P., Gonzalez, I., Chinga-Carrasco, G., Singh, G., Ferreira P. 2015. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and Mechanical treatment. Micron 72: 28-33. https://doi.org/10.1016/j.micron.2015.02.003