DOI QR코드

DOI QR Code

Antioxidant Activity of The Residue Generated During Pervaporation of Bioethanol Produced from Lignocellulosic Biomass

목질계 바이오매스로부터 생산된 바이오에탄올 투과증발 과정에서 발생한 투과증발 잔류물의 항산화 활성

  • Received : 2015.06.10
  • Accepted : 2015.08.10
  • Published : 2015.11.25

Abstract

In this study, we produced bioethanol from the original hydrolysate obtained during oxalic acid pretreatment of lignocellulosic biomass. The bioethanol was separated and concentrated by pervaporation and the residue after pervaporation was evaluated for its antioxidant activity. Xylose ($37.28g/{\ell}$) was the major product in the original hydrolysate. The original hydrolysate contained acetic acid, furfural and total phenolic compounds (TPC) as fermentation inhibitors. Acetic acid was removed by electrodialysis (ED), and $12.21g/{\ell}$ of bioethanol was produced from ED-treated hydrolysate. The TPC of ethyl acetate extracts from the residue obtained (OA-E) during pervaporation was 86.81 mg/100 g (extract). The $IC_{50}$ values of DPPH and ABTS radical scavenging activities, and reducing power of OA-E were $0.87mg/m{\ell}$, $0.85mg/m{\ell}$, and $0.59mg/m{\ell}$, respectively. Sugar degradation products and the phenolic compounds in OA-E were determined by GC-MS.

Keywords

lignocellulosic biomass;hydrolysate;bioethanol;pervaporation;antioxidant activity

References

  1. Beltran, A.B., Nisola, G.M., Vivas, E.L., Cho, W., Chung, W.J. 2013. Poly (octylmethylsiloxane)/oleyl alcohol supported liquid membrane for the pervaporative recovery of 1-butanol from aqueous and ABE model solutions. Journal of Industrial and Engineering Chemistry 19: 182-189. https://doi.org/10.1016/j.jiec.2012.07.022
  2. Brand-Williams, W., Cuvelier, M.E., Berset, C. 1995. Use of a free-radical method to evaluate antioxidant activity. Food Science and Technology 28(1): 25-30.
  3. Cheng, S., Wilks, C., Yuan, Z., Leitch, M., Xu, C.C. 2012. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent. Polymer Degradation and Stability 97(6): 839-848. https://doi.org/10.1016/j.polymdegradstab.2012.03.044
  4. Cho, D.H., Shin S.J., Bae, Y.W., Park, C.H. 2010. Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis. Bioresource Technology 101(13): 4947-4951. https://doi.org/10.1016/j.biortech.2009.11.014
  5. Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., Dominguez, H. 2009. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chemistry 114: 806-812. https://doi.org/10.1016/j.foodchem.2008.10.017
  6. Delgenes, J.P., Moletta, R., Navarro, J.M. 1996. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology 19: 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
  7. Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huynh, L.H., Soetaredijo, F.E., Ismadji, S., Ju, Y.H. 2014. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of food and drug analysis 22: 296-302. https://doi.org/10.1016/j.jfda.2013.11.001
  8. Ezhilan B.P., Neelamegam, R. 2012. GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Research 4(1): 11-4.
  9. Jeong, S.Y., Trinh, L.T.P., Lee, H.J., Lee, J.W. 2014. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Bioresource Technology 152: 444-449. https://doi.org/10.1016/j.biortech.2013.11.029
  10. Jonsson, L.J., Alriksson, B., Nilvebrant, N. 2013. Bioconversion of lignocellulosic: inhibitors and detoxification. Biotechnology for Biofuels 6: 16-25. https://doi.org/10.1186/1754-6834-6-16
  11. Kilic, I., Yesiloglub, Y. 2013. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 115: 719-724. https://doi.org/10.1016/j.saa.2013.06.110
  12. Lee, H.J., Ahn, S.J., Seo, Y.J., Lee J.W. 2013. A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis. Bioresource Technology 130: 211-217. https://doi.org/10.1016/j.biortech.2012.12.061
  13. Lee, J.W., Rodrigues, C.L.B., Kim, H.J., Choi, I.G., Jeffries, T.W. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101: 4379-4385. https://doi.org/10.1016/j.biortech.2009.12.112
  14. Moure, A., Conde, E., Falque, E., Dominguez, H., Parajo J.C. 2014. Production of nutraceutics from chestnut burs by hydrolytic treatment. Food Research International 65: 359-366. https://doi.org/10.1016/j.foodres.2014.08.052
  15. Mourtzinos, I., Konteles, S., Kalogeropoulos, N., Karathanos, V.T. 2009. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food Chemistry 114(3): 791-797. https://doi.org/10.1016/j.foodchem.2008.10.014
  16. Ozgen, M., Reese, R.N., Tulio, A.Z., Scheerens, J.C., Miller, A.R. Modified 2006. 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry 54(4): 1151-1157. https://doi.org/10.1021/jf051960d
  17. Park, M.J., Choi, W.S., Min, B.C., Kim, H.Y., Kang, H.Y., Choi, I.G. 2008. Antioxidant Activities of Essential Oils from Charmaechyparis obtusa. Journal of the Wood Science and Technology 36(6): 159-167.
  18. Rajagopal, D., Sexton, S.E., Roland-Holst, D., Zilberman, D. 2007. Challenge of biofuel: filling the tank without emptying the stomach?. Environmental Research Letters 2: 1-9.
  19. Robinson, P.H., Karges, K. Gibson, M.L. 2008. Nutritional evaluation of four co-product feedstuffs from the motor fuel ethanol distillation industry in the Midwestern USA. Animal Feed Science and Technology 146: 345-352. https://doi.org/10.1016/j.anifeedsci.2008.01.004
  20. Shao, P., Huang, R.Y.M. 2007. Polymeric membrane pervaporation. Journal of Membrane Science 287: 162-179. https://doi.org/10.1016/j.memsci.2006.10.043
  21. Silva, E.A.B., Zabkova, M., Araujo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem M.N., Rodrigues, A.E. 2009. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chemical Engineering Research and Desigh 87: 1276-1292. https://doi.org/10.1016/j.cherd.2009.05.008
  22. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  23. Trinh, L.T.P., Lee, Y.J., Bae, H.J., Lee, H.J. 2014. Pervaporative separation of butanol using a composite PDMS/PEI hollow fiber membrane. Journal of Industrial and Engineering Chemistry 20(5): 2814-2818. https://doi.org/10.1016/j.jiec.2013.11.012
  24. Vazquez, G., Fontenla, E., Santos, J., Freire, M.S., Gonzalez-Alvarez, J., Antorrena, G. 2008. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products 28(3): 279-285. https://doi.org/10.1016/j.indcrop.2008.03.003

Acknowledgement

Supported by : 산림청