DOI QR코드

DOI QR Code

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

Srikesh, G.;Nesaraj, A. Samson

  • Received : 2014.10.17
  • Accepted : 2014.10.31
  • Published : 2015.03.31

Abstract

Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.

Keywords

Nickel oxide nanoparticles;combustion route with different organic fuels;physical characterization;electrochemical studies;electrochemical capacitors

References

  1. X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y. Yang, H. Zhang, H.H. Hng and Q. Yan, Nano Res., 3, 643 (2010). https://doi.org/10.1007/s12274-010-0024-6
  2. E. Frackowiak and F. Beguin, Carbon, 39, 937(2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  3. J.L. Liu, L.Z. Fan and X. Qu, Electrochimica Acta, 66, 302 (2012). https://doi.org/10.1016/j.electacta.2012.01.095
  4. K.O. Moura, R.J.S. Lima, C.B.R. Jesus, J.G.S. Duque and C.T. Meneses, Revista Mexicana de F'ιsica, S 58, 167 (2012).
  5. F. Davar, Z. Fereshteh and M.S. Niasari, J. Alloys and Compounds, 476, 797 (2009). https://doi.org/10.1016/j.jallcom.2008.09.121
  6. S.A.E. Safty, M. Khairy, M. Ismael and H. Kawarada, Applied Catalysis B: Environmental, 123-124, 162 (2012). https://doi.org/10.1016/j.apcatb.2012.04.021
  7. F. Lin, M. Montano, C. Tian, Y. Ji, D. Nordlund, T.C. Weng, R.G. Moore, D.T. Gillaspie, K.M. Jones, A.C. Dillon, R.M. Richards and C. Engtrakul, Solar Energy Materials and Solar Cells, 126, 206 (2014). https://doi.org/10.1016/j.solmat.2013.11.023
  8. B. Vidhyadharan, N.K.M. Zain, I.I. Misnon, R.A. Aziz, J. Ismail, M.M. Yusoff and R. Jose, J. Alloys and Compounds, 610, 143 (2014). https://doi.org/10.1016/j.jallcom.2014.04.211
  9. A. Jena, N. Munichandraiah and S.A. Shivashankar, J. Power Sources, 237, 156 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.038
  10. D.W. Wang, F. Li and H.M. Cheng, J. Power Sources, 185, 1563 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.032
  11. L. Feng, Y. Zhu, H. Ding, C. Ni, J. Power Sources, 267, 430 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.092
  12. S.K. Chang, Z. Zainal, K.B. Tan, N. A.Yusof, W.M.D. Wan Yusoff and S.R.S. Prabaharan, Current Appl. Phy., 12, 1421 (2012). https://doi.org/10.1016/j.cap.2012.03.028
  13. R.R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han and H. Ahn, J. Alloys and Compounds, 509, 6677 (2011). https://doi.org/10.1016/j.jallcom.2011.03.136
  14. J.Y. Choi and J.H. Choi, J. Indust. Engg. Chem., 16, 401 (2010). https://doi.org/10.1016/j.jiec.2009.08.005
  15. H.Y. Wu and H.W. Wang, Int. J. Electrochem. Sci., 7, 4405 (2012).
  16. W.H. Zhu, J.J. Ke, H.M. Yu and D.J. Zhang, J. Power Sources, 56, 75 (1995). https://doi.org/10.1016/0378-7753(95)80011-5
  17. B.T. Raut, S.G. Pawar, M.A. Chougule, Shaswati Sen and V.B. Patil, J Alloys and Compounds, 509, 9065 (2011). https://doi.org/10.1016/j.jallcom.2011.06.029
  18. M. Hasan, M.Jamal and K.M. Razeeb, Electrochimica Acta, 60,193 (2012). https://doi.org/10.1016/j.electacta.2011.11.039
  19. J.P. Zheng and T.R. Jow, J. Electrochem. Soc., 142, L6 (1995). https://doi.org/10.1149/1.2043984
  20. J.P. Zheng, P.J. Cygan and T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995). https://doi.org/10.1149/1.2050077
  21. C.C. Hu and Y. H. Huang, J. Electrochem. Soc. 146, 2495 (1999). https://doi.org/10.1149/1.1391961
  22. Y. Zhang, G.Y. Li, Y. Lv, L.Z. Wang, A.Q. Zhang, Y.H. Song and B.L. Huang, J. Hydrogen Energy, 36, 11760 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.020
  23. K.R. Prasad and N. Miura, Electrochem. Commun. 6, 1004 (2004). https://doi.org/10.1016/j.elecom.2004.07.017
  24. J. Yan, T. Wei, J. Cheng, Z. Fan and M. Zhang, Mater. Res. Bull. 45, 210 (2010). https://doi.org/10.1016/j.materresbull.2009.09.016
  25. J. Xu, L. Gao, J. Cao, W. Wang and Z. Chen, Electrochimica Acta, 56, 732 (2010). https://doi.org/10.1016/j.electacta.2010.09.092
  26. Q. Yuanchun, Z. Yanbao and W. Zhishen, Mater. Chem. Phy., 110, 457 (2008). https://doi.org/10.1016/j.matchemphys.2008.03.001
  27. Y.Y. Ping, L.R. Sheng, H.K. Long, W.L. Ping, L.S. Qin and Z.W. Wen, Trans. Non ferrous Met. Soc. China, 17, 1334 (2007). https://doi.org/10.1016/S1003-6326(07)60272-6
  28. K.C. Stella and A.S. Nesaraj, Iranian J. Materials Science & Engineering, 7, 36 (2010).
  29. G. Mattei, P. Mazzoldi, M.L. Post, D. Buso, M. Guglielmi and A. Martucci, J. Adv. Materials, 19, 561 (2007). https://doi.org/10.1002/adma.200600930
  30. M.W. Zhu, Z.J. Wang, Y.N. Chen and Z.D. Zhang, Surface & Coatings Tech. 216, 139 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.041
  31. X.W. Lou, D. Deng, J.Y. Lee, J. Feng and L.A. Archer, Adv. Mater., 20, 258 (2008). https://doi.org/10.1002/adma.200702412
  32. Z.Z. Lin, F.L. Jiang, L. Chen, C.Y. Yue, D.Q. Yuan, A.J. Lan and M.C. Hong, Cryst. Growth Des. 7, 1712 (2007). https://doi.org/10.1021/cg060732o
  33. Y. Wan and D. Zhao, Chem. Rev. 107, 2821 (2007). https://doi.org/10.1021/cr068020s
  34. Q. Zhao, Z. Zhang, T. Dong and Y. Xie, J. Phys. Chem. B, 110, 15152 (2006). https://doi.org/10.1021/jp0620522
  35. G.A. Seisenbaeva, M.P. Moloney, R. Tekoriute, A.H. Dessources, J.M. Nedelec, Y. K. Gun’ko, Vadim G. Kessler, Langmuir 26, 9809 (2010). https://doi.org/10.1021/la1000683
  36. Zhongli Wang, Ruixia Liu, Fengyu Zhao, Xiaojuan Liu, Minfeng Lv and Jian Meng, Langmuir, 26, 10135 (2010). https://doi.org/10.1021/la100277w
  37. A.Z. Sadek, H. Zheng, M. Breedon, V. Bansal, S.K. Bhargava, K. Latham, J. Zhu, L. Yu, Z. Hu, P.G. Spizzirri, W. Wlodarski and K. K. Zadeh, Langmuir, 25, 9545 (2009). https://doi.org/10.1021/la901944x
  38. D.B. Robinson, C.A.M. Wu, M.D. Ong, B.W. Jacobs and B.E. Pierson, Langmuir 26, 6797 (2010). https://doi.org/10.1021/la903816f
  39. T. Stimpfling and F. Leroux, Chem. Mater., 22, 974 (2010). https://doi.org/10.1021/cm901860y
  40. D. Carriazo, F. Picó, M.C. Gutiérrez, F. Rubio, J.M. Rojo and F. D. Monte, J. Mater. Chem. 20, 773 (2010). https://doi.org/10.1039/B915903G
  41. K. Wang, Y. Wang, Y. Wang, E. Hosono and H. Zhou, J. Phys. Chem. C, 113, 1093 (2009). https://doi.org/10.1021/jp807463u
  42. G.M. Suppes, B.A. Deore and M.S. Freund, Langmuir, 24, 1064 (2008). https://doi.org/10.1021/la702837j
  43. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L.C. Qin, Carbon, 49, 2917 (2011). https://doi.org/10.1016/j.carbon.2011.02.068
  44. E.H. Liu, W. Li, J. Li, X.Y. Meng, R. Ding and S.T. Tan, Mater. Res. Bull., 44, 1122 (2009) https://doi.org/10.1016/j.materresbull.2008.10.003
  45. M.D. Stoller and R.S. Ruoff, Energy Environ. Sci., 3, 1294 (2010) https://doi.org/10.1039/c0ee00074d
  46. E. Kim, D. Son, T.G. Kim, J. Cho, B. Park, K.S. Ryu and S.H. Chang, Angew. Chem. Int. Ed., 43, 5987 (2004). https://doi.org/10.1002/anie.200454080
  47. X.W. Lou, D. Deng, J.Y. Lee and L.A. Archer, J. Mater. Chem., 18, 4397 (2008). https://doi.org/10.1039/b810093d