DOI QR코드

DOI QR Code

Electrochemical and Safety Performances of Polyimide Nano fiber-based Nonwoven Separators for Li-ion Batteries

Kim, Yeon-Joo;Lee, Sang-Min;Kim, Seok Hong;Kim, Hyun-Soo

  • Received : 2014.12.26
  • Accepted : 2015.02.16
  • Published : 2015.03.31

Abstract

In this study, cell performance and thermal stability of lithium-ion cells with a polyimide (PI) separator are investigated. In comparison to conventional polyethylene (PE) separator, the PI separator exhibits distinct advantage in microporous structure, leading to superior reliability of the cell. The cells with PI separator exhibit good cell performances as same as the cells with PE separator, but their reliability was superior to the cell with PE separator. Especially in the hot-box test at 150 and 180℃, PI separator showed a contraction percentage close to 0% at 150℃, while the PE separator showed a contraction percentage greater than 10% in both width and length. Therefore, the PI separator can be the promising candidate for separators of the next generation of lithium-ion battery.

Keywords

polyimide (PI);polyethylene (PE);electrospun fibrous membrane;lithium battery;separator;thermal shrinkage

References

  1. K. Morigaki, N. Kabuto, and K. Haraguchi, Matsushita Electric Industrial, US Patent 5597659, issued Jan. 28, 1997.
  2. K. Abraham, M. Alamgir, and D. Hoffman, J. Electrochem. Soc., 142, 683 (1995). https://doi.org/10.1149/1.2048517
  3. D. Kim, K. Noh, J. Chun, S. Kim, and J. Ko, Solid State Ionics, 144, 329 (2001). https://doi.org/10.1016/S0167-2738(01)00977-8
  4. Y. Wang, J. Travas-Sejdic, and R. Steiner, Solid State Ionics, 148, 443 (2002).
  5. F. Ooms, E. Kelder, J. Schoonman, N. Gerrits, J. Smedinga, and G. Callis, J. Power Sources, 97, 598 (2001).
  6. Y. Miaoa, G. Zhub, H. Houc, Y. Xiab, and T. Liua, J. Power Sources, 226, 82 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.027
  7. L. Carnell, E. Siochi, N. Holloway, R. Stephens, C Rhim, L. Niklason, and R. Clark, Macromolecules, 5345, 14 (2008).
  8. D. Chen, T. Liu, X. Zhou, W. Tjiu, and H. Hou, J. Phys. Chem., B, 113, 9741 (2009).
  9. A. Christie, S. Lilley, E. Staunton, Y. Andreev, and P. Bruce, Nature, 433, 50 (2005). https://doi.org/10.1038/nature03186
  10. A. M. Stephan, Europ. Polymer J., 42, 21 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.017
  11. D. Chen, R. Wang, W. Tjiu, and T. Liu, Compos. Sci. Technol., 71, 1556 (2011). https://doi.org/10.1016/j.compscitech.2011.06.013
  12. Y. Kim, H. Kim, C. Doh, S. Kim, and S. Lee. J. Power Sources, 244, 196 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.166
  13. P. Ma and R. Zhang, J. Biomedical Mater. Resear., 46, 60 (1999). https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H
  14. D. Reneker and I. Chun, Nanotechnology, 7, 216 (1996). https://doi.org/10.1088/0957-4484/7/3/009
  15. Y. Kim, H. Kim, C. Doha, S. Kim, and S. Lee, J. Power Sources, 244, 196 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.166
  16. F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 394, 456 (1998). https://doi.org/10.1038/28818
  17. G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, J. Power Sources, 77, 34 (1999). https://doi.org/10.1016/S0378-7753(98)00168-2
  18. B.L. Luan, G. Campbell, M. Gauthier, X.Y. Liu, I. Davidson, J. Nagata, M. Lepinay, F. Bernier, S. Argue, ECS Transactions, 25, 59 (2010).
  19. R.J. Brodd, H.M. Friend, J.C. Nardi, Lithium Ion Battery Technology, ITE-JEC Press, 1995.
  20. U. von Sacken, E. Nodwell, A. Sundher, and J.R. Dahn, Solid State Ionics, 69, 284 (1994). https://doi.org/10.1016/0167-2738(94)90417-0
  21. U. von Sacken, E. Nodwell, A. Sundher, and J. Dahn, Solid State Ionics, 69, 284 (1994). https://doi.org/10.1016/0167-2738(94)90417-0
  22. S. Tobishima and J. Yamaki, J. Power Sources, 81, 882 (1999).
  23. J. Yamaki, in: M. Wakihara, O. Yamamoto (Eds.), Lithium Ion Batteries, 83, Kodansha and Wiley-VCH, Tokyo, Japan (1998).
  24. J. Cho, Y. Kim, T. Kim, and B. Park, Chem. Mater., 13, 18 (2001). https://doi.org/10.1021/cm000759+
  25. H. Kweon, S. Kim, and D. Park, J. Power Sources, 88, 255 (2000). https://doi.org/10.1016/S0378-7753(00)00368-2
  26. R. Leising, M. Palazzo, E. Takeuchi, and K. Takeuchi, J. Electrochem. Soc., 148, A838 (2001). https://doi.org/10.1149/1.1379740
  27. A. Dey, J. Electrochem. Soc., 118, 1547 (1971). https://doi.org/10.1149/1.2407783

Cited by

  1. Surface-modified Li[Ni0.8Co0.15Al0.05]O2Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating vol.7, pp.4, 2016, https://doi.org/10.5229/JECST.2016.7.4.263
  2. Polyimide fibers prepared by a dry-spinning process: Enhanced mechanical properties of fibers containing biphenyl units vol.133, pp.31, 2016, https://doi.org/10.1002/app.43727
  3. The Evolution of Lithium-Ion Cell Thermal Safety with Aging Examined in a Battery Testing Calorimeter vol.2, pp.4, 2016, https://doi.org/10.3390/batteries2020012
  4. Electrospun polyimide nanofibers and their applications vol.61, 2016, https://doi.org/10.1016/j.progpolymsci.2016.06.006
  5. Electrochemical Performance of Carbon Coated LiMn2O4Nanoparticles using a New Carbon Source vol.7, pp.2, 2016, https://doi.org/10.5229/JECST.2016.7.2.139
  6. Synthesis, characterization and studies of properties of six polyimides derived from two new aromatic diamines containing a central silicon atom vol.91, 2017, https://doi.org/10.1016/j.eurpolymj.2017.04.023