DOI QR코드

DOI QR Code

Electrochemical Investigation of Inhibitory of New Synthesized 3-(4-Iodophenyl)-2-Imino-2,3-Dihydrobenzo[d]Oxazol-5-yl 4-Methylbenzenesulfonate on Corrosion of Stainless Steel in Acidic Medium

Ehsani, Ali;Moshrefi, Reza;Ahmadi, Maliheh

  • Received : 2014.05.02
  • Accepted : 2014.09.03
  • Published : 2015.03.31

Abstract

3-(4-Iodophenyl)-2-imino-2,3-dihydrobenzo[d]oxazol-5-yl 4-methylbenzenesulfonate (4-IPhOXTs) was synthesized and its inhibiting action on the corrosion of stainless steel 316L (SS) in sulfuric acid was investigated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of the investigation show that this compound has excellent inhibiting properties for SS corrosion in sulfuric acid. Inhibition efficiency increases with increase in the concentration of the inhibitor. The adsorption of 4-IPhOXTs onto the SS surface followed the Langmuir adsorption model with the free energy of adsorption ΔG0ads of −8.45 kJ mol−1 . Quantum chemical calculations were employed to give further insight into the mechanism of inhibition action of 4-IPhOXTs.

Keywords

Organic inhibitor;Adsorption;Stainless steel;Impedance;Density functional theory

References

  1. A. Ehsani, S. Adeli, F. Babaei, H. Mostaanzadeh, M. Nasrollahzadeh, J. Electroanal. Chem. 713 (2014) 91. https://doi.org/10.1016/j.jelechem.2013.12.003
  2. M.G. Mahjani, R. Moshrefi, A. Ehsani, M. Jafarian, Anti-Corros. Methods Mater. 58 (2011) 250-257. https://doi.org/10.1108/00035591111167721
  3. Hassan, H. Electrochim. Acta 51 (2006) 5966-5972. https://doi.org/10.1016/j.electacta.2006.03.065
  4. S. Martinez, Mater. Chem. Phys. 77 (2002) 97-102.
  5. P. Hohenberg, W. Kohn, Phys. Rev. A136 (1964) 864.
  6. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Corros. Sci. 51 (2009) 1869.
  7. M. Ozcan, F. Karadag, I. Dehri, Acta Phys. Chim. Sin. 24 (8) (2008) 1387. https://doi.org/10.1016/S1872-1508(08)60059-5
  8. A. Ehsani, N. Ajami, F. Babaei, H. Mostaanzadeh, Synth. Met. 197 (2014)80-85. https://doi.org/10.1016/j.synthmet.2014.08.017
  9. A. Ehsani, M.G. Mahjani, S. Adeli, S. Moradkhani, Prog. Org. Coat. 77 (2014) 1674-1681. https://doi.org/10.1016/j.porgcoat.2014.05.027
  10. D. Habibi, M. Nasrollahzadeh, Y. Bayat. Synth. Commun, 41(2011) 2304-2308. https://doi.org/10.1080/00397911.2011.571803
  11. D. Habibi, M. Nasrollahzadeh. Synth. Commun, 42(2012) 2023-2032 https://doi.org/10.1080/00397911.2010.548620
  12. A. Kokalj, Electrochim. Acta 56 (2010) 745-755. https://doi.org/10.1016/j.electacta.2010.09.065
  13. Gauss View, Version 3.0, Gaussian Inc., Pittsburgh, PA, 2003.
  14. M.G. Mahjani, R. Moshrefi, A. Ehsani, M. Jafarian, Anti-Corros. Methods Mater, 58 (2011) 250-257. https://doi.org/10.1108/00035591111167721
  15. T. Zhihua, Z. Shengtao, L. Weihua, H. Baorong, Ind. Eng. Chem. Res 50 (2011) 6082-6088. https://doi.org/10.1021/ie101793b
  16. A. Ehsani, M.G. Mahjani, M. Jafarian, Turk. J. Chem. 35 (2011) 1-9.
  17. A. Ehsani, F. Babaei, M. Nasrollahzadeh, Appl. Surf. Sci. 283 (2013) 1060-1064. https://doi.org/10.1016/j.apsusc.2013.07.067
  18. A. Ehsani, M. G. Mahjani, M. Jafarian, A. Naeemy, Electrochim. Acta 71 (2012) 128-133. https://doi.org/10.1016/j.electacta.2012.03.107
  19. A. Ehsani, M.G. Mahjani,M. Jafarian, A. Naeemy, Prog. Org. Coat. 69 (2010) 510-516. https://doi.org/10.1016/j.porgcoat.2010.09.007
  20. A. Ehsani, M.G. Mahjani, M. Jafarian, Synth. Met. 161 (2011) 1760-1765. https://doi.org/10.1016/j.synthmet.2011.06.020
  21. A. Ehsani, M.G. Mahjani, M. Bordbar, S. Adeli, J. Electroanal. Chem. 710 (2013) 29-35. https://doi.org/10.1016/j.jelechem.2013.01.008
  22. A. Ehsani, M G. Mahjani, R. Moshrefi, H. Mostaanzadeh, J. Shabani, RSC. Adv. 4 (38) (2014), 20031 - 20037. https://doi.org/10.1039/c4ra01029a
  23. A. Ehsani, M. Nasrollahzadeh, MG. Mahjani, R. Moshrefi, H. Mostaanzadeh, Ind. Eng. Chem. 20 (2014) 4363-4370. https://doi.org/10.1016/j.jiec.2014.01.045
  24. A. Ehsani, M.G. Mahjani, M. Nasseri, M. Jafarian. AntiCorros. Methods Mater, 61 (2014) 146-152. https://doi.org/10.1108/ACMM-07-2012-1193
  25. I. Ahamad, M.A. Quraishi, Corros. Sci. 51 (2009) 2006-2013. https://doi.org/10.1016/j.corsci.2009.05.026
  26. Q.B. Zhang, Y.X. Hua, Electrochim. Acta 54 (2009) 1881-1887. https://doi.org/10.1016/j.electacta.2008.10.025
  27. W. Li, Q. He, C. Pei, B. Hou, Electrochim. Acta 52 (2007) 6386-6394. https://doi.org/10.1016/j.electacta.2007.04.077
  28. R. Solmaz, G. Kardas, B. Yazýcý, M. Erbil, Prot. Met. 41 (2005) 581-585. https://doi.org/10.1007/s11124-005-0083-3
  29. G. Kardas, Mater. Sci. 41 (2005) 337-343. https://doi.org/10.1007/s11003-005-0170-2
  30. J. Aljourani, K. Raeissi, M.A. Golozar, Corros. Sci. 51 (2009) 1836-1843. https://doi.org/10.1016/j.corsci.2009.05.011
  31. M.L. Zheludkevich, K.A. Yasakau, S.K. Poznyak, M.G.S. Ferreira, Corros. Sci. 47 (2005) 3368-3383. https://doi.org/10.1016/j.corsci.2005.05.040
  32. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Corros. Sci. 51 (2009) 276-282. https://doi.org/10.1016/j.corsci.2008.11.013
  33. M.G. Hosseini, M. Ehteshamzadeh, T. Shahrabi, Electrochim. Acta 52 (2007) 3680-3685. https://doi.org/10.1016/j.electacta.2006.10.041
  34. S. S. Afak, B, Duran, A. Yurt, G. Turkoglu, Corros. Sci. 54 (2012) 251-259. https://doi.org/10.1016/j.corsci.2011.09.026
  35. H.H. Hassan, E. Adbelghani, M.A. Amin, Electrochim. Acta 52 (2007) 6359-6366. https://doi.org/10.1016/j.electacta.2007.04.046
  36. Y. Abdoud, A. Abourrriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, N. Al Himidi, H. Hannache, Mater. Chem. Phys. 105 (2007) 1-5. https://doi.org/10.1016/j.matchemphys.2007.03.037
  37. M.A. Quaraishi, J. Rawat, M. Ajmal, J. Appl. Electrochem. 30 (2000) 745-751. https://doi.org/10.1023/A:1004099412974
  38. K.F. Khaled, M.A. Amin, Corros. Sci. 51 (2009) 1964-1975. https://doi.org/10.1016/j.corsci.2009.05.023
  39. I.B. Obot, N.O. Obi-Egbedi, Corros. Sci. 52 (2010) 282-285. https://doi.org/10.1016/j.corsci.2009.09.013
  40. D. Habibi, M. Nasrollahzadeh, H. Sahebekhtiari, R.V. Parish, Tetrahedron, 69 (2013), 3082-3087. https://doi.org/10.1016/j.tet.2013.01.069

Cited by

  1. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory vol.490, 2017, https://doi.org/10.1016/j.jcis.2016.11.048
  2. Electrochemical and quantum-chemical study on newly synthesized triazoles as corrosion inhibitors of mild steel in 1 M HCl vol.43, pp.5, 2017, https://doi.org/10.1007/s11164-016-2816-0
  3. Theoretical, common electrochemical and electrochemical noise investigation of inhibitory effect of new organic compound nanoparticles in the corrosion of stainless steel in acidic solution vol.69, pp.8, 2016, https://doi.org/10.1007/s12666-015-0724-4
  4. Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device vol.484, 2016, https://doi.org/10.1016/j.jcis.2016.08.075
  5. Electrochemical Corrosion Behavior of Duplex Stainless SteelAISI 2205 in Ethylene Glycol-Water Mixture in the Presence of50 W/V % LiBr vol.7, pp.1, 2016, https://doi.org/10.5229/JECST.2016.7.1.58
  6. Nanocomposite of p-type conductive polymer/Cu (II)-based metal-organic frameworks as a novel and hybrid electrode material for highly capacitive pseudocapacitors vol.23, pp.1, 2017, https://doi.org/10.1007/s11581-016-1811-1
  7. Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode vol.6, pp.3, 2015, https://doi.org/10.5229/JECST.2015.6.3.88
  8. Effect of [Tris(trimethylsiloxy)silyethyl]dimethylchlorosilane on the corrosion protection enhancement of hydrophobic film coated on AISI 304 vol.6, pp.1, 2018, https://doi.org/10.1088/2053-1591/aae93a