Electrosynthesis and Electrochemical Properties of Metal Oxide Nano Wire/ P-type Conductive Polymer Composite Film

  • Siadat, S.O. Ranaei
  • Received : 2015.05.26
  • Accepted : 2015.07.06
  • Published : 2015.09.30


This study introduces a facile strategy to prepare metal oxide/conducting polymer nanocomposites that may have promising applications in energy storage devices. Ploy aniline/nano wire manganese dioxide (PANI/NwMnO2) was synthesized by cyclic voltammetry on glassy carbon electrode. Morphology and structure of the composite, pure PANI, MnO2 nanowires were fully characterized using XRD and SEM analysis. Electrochemical studies shows excellent synergistic effect between PANI and MnO2 nanowires which results in its capacitance increase and cycle stability against PANI electrode. Specific capacitances of PANI/NwMnO2 and PANI were 456 and 190 F/g respectively. The electrochemical performance of electrodes studied using cyclic voltammetry, Galvanostatic charge/discharge and impedance spectroscopy.


super capacitors;nanowire;impedance;nanocomposite.


  1. Ehsani, A., et al., Poly ortho aminophenol/TiO 2 nanocomposite: electrosynthesis and characterization. Synthetic Metals, 2013. 165: p. 51-55.
  2. Li, X., et al., In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance. Thin Solid Films, 2015. 584: p. 348-352.
  3. Wang, H., et al., Effect of graphene oxide on the properties of its composite with polyaniline. ACS applied materials & interfaces, 2010. 2(3): p. 821-828.
  4. Nam, K.-W., et al., Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. Journal of Power Sources, 2008. 182(2): p. 642-652.
  5. Hulicova-Jurcakova, D., et al., Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electrochemical performances in supercapacitors. Energy & Fuels, 2008. 22(6): p. 4139-4145.
  6. Molina, J., et al., Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA. European Polymer Journal, 2009. 45(4): p. 1302-1315.
  7. Ehsani, A., M. Mahjani, and M. Jafarian, Electrosynthesis of poly ortho aminophenol films and nanoparticles:A comparative study. Synthetic Metals, 2012. 162(1): p. 199-204.
  8. Long, J.W., A.L. Young, and D.R. Rolison, Spectroelectrochemical characterization of nanostructured, mesoporous manganese oxide in aqueous electrolytes. Journal of the Electrochemical Society, 2003. 150(9): p. A1161-A1165.
  9. Reddy, R.N. and R.G. Reddy, Synthesis and electrochemical characterization of amorphous MnO 2 electrochemical capacitor electrode material. Journal of Power Sources, 2004. 132(1): p. 315-320.
  10. Hsieh, Y.-C., et al., Investigation on capacity fading of aqueous MnO 2· nH 2 O electrochemical capacitor. Journal of Power Sources, 2008. 177(2): p. 660-664.
  11. Sadeghinia, M., M. Rezaei, and E. Amini, Preparation of á-MnO 2 nanowires and its application in low temperature CO oxidation. Korean Journal of ChemicalEngineering, 2013. 30(11): p. 2012-2016.
  12. Lei, Z., Z. Chen, and X. Zhao, Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. The Journal of Physical Chemistry C, 2010. 114(46): p.19867-19874.
  13. Plesu, N., et al., Effect of temperature on the electrochemical synthesis and properties of polyaniline films. Journal of Non-Crystalline Solids, 2010. 356(20): p. 1081-1088.
  14. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
  15. Ehsani, A., M. Mahjani, and M. Jafarian, An electrochemical study of the synthesis and properties of multi-walled carbon nanotube/poly ortho aminophenol composites. Synthetic Metals, 2011. 161(15): p. 1760-1765.
  16. Dhand, C., et al., Recent advances in polyaniline based biosensors. Biosensors and Bioelectronics, 2011. 26(6): p. 2811-2821.
  17. Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials research bulletin, 2008. 43(8): p. 1913-1942.
  18. de Heer, W.A., et al., Electron field emitters based on carbon nanotube films. Advanced Materials, 1997. 9(1): p. 87-89.
  19. Rao, C.N.R., et al., Nanotubes. ChemPhysChem, 2001. 2(2): p. 78-105.<78::AID-CPHC78>3.0.CO;2-7
  20. Liu, Z., et al., Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir, 2000. 16(8): p. 3569-3573.
  21. Shabani Shayeh, J., P. Norouzi, and M.R. Ganjali, Studying the supercapacitive behavior of a polyaniline/nano-structural manganese dioxide composite using fast Fourier transform continuous cyclic voltammetry. RSC Advances, 2015. 5(26): p. 20446-20452.
  22. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845-854.
  23. Ates, M., Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Progress in Organic Coatings, 2011. 71(1): p. 1-10.
  24. Jurewicz, K., et al., Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 2001. 347(1): p. 36-40.
  25. Hall, P.J., et al., Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science, 2010. 3(9): p. 1238-1251.
  26. Xia, K., et al., Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008. 46(13): p. 1718-1726.
  27. Wu, F. and B. Xu, Progress on the application of carbon nanotubes in supercapacitors. New Carbon Materials, 2006. 21(2): p. 176-184.
  28. Zhao, D., et al., An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide. ACS applied materials & interfaces, 2012. 4(10): p. 5583-5589.
  29. Sun, Z. and X. Lu, A solid-state reaction route to anchoring Ni (OH) 2 nanoparticles on reducedgraphene oxide sheets for supercapacitors. Industrial & Engineering Chemistry Research, 2012. 51(30): p. 9973-9979.
  30. Lefebvre, M., et al., Chemical synthesis, characterization, and electrochemical studies of poly (3, 4-ethylenedioxy-thiophene)/poly (styrene-4-sulfonate) composites. Chemistry of materials, 1999. 11(2): p. 262-268.
  31. Xu, D., et al., Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS applied materials & interfaces, 2013. 6(1): p. 200-209.
  32. Zhang, X., et al., Investigation of a Branchlike MoO3/Polypyrrole Hybrid with Enhanced Electrochemical Performance Used as an Electrode in Supercapacitors. ACS applied materials & interfaces, 2014. 6(2): p. 1125-1130.

Cited by

  1. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage vol.6, pp.1, 2016,