DOI QR코드

DOI QR Code

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

Ponmani, K.;Kiruthika, S.;Muthukumaran, B.

  • Received : 2015.06.06
  • Accepted : 2015.07.14
  • Published : 2015.09.30

Abstract

In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.

Keywords

Membraneless fuel cells;Nickel;Platinum;Tin;Sodium Percarbonate

References

  1. J. Ribeiro, D.M. dos Anjos, J.-M. Leger, F. Hahn, P. Olivi, A.R. de Andrade, G. Tremiliso-Filho, and K.B. Kokoh, J. Appl. Electrochem., 38, 653(2008). https://doi.org/10.1007/s10800-008-9484-8
  2. J.-H. Choi, K.-W. Park, B.-K. Kwon, and Y.-E. Sung, J. Electrochem. Soc., 150, A973(2000).
  3. K.-W. Park, J.-H. Choi, B.-W. Kwon, S.-A. Lee, and Y.-E. Sung, J. Phys. Chem. B, 106, 1869(2002). https://doi.org/10.1021/jp013168v
  4. K.-W. Park, J.-W. Choi, S.-A. Lee, C. Pak, H. Chang, and Y.-E. Sung, J. Catal., 224, 236(2004). https://doi.org/10.1016/j.jcat.2004.02.010
  5. S.Q. Song, W.J. Zhou, Z.H. Zhou, L.H. Jiang, G.Q. Sun, and Q. Xin, et al., Int. J. Hydrogen Energy, 30, 995(2005). https://doi.org/10.1016/j.ijhydene.2004.11.006
  6. Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, and L.M. Gan, J. Power Sources, 149, 1(2005). https://doi.org/10.1016/j.jpowsour.2005.02.009
  7. M.L. Calegaro, H.B. Suffredini, S.A.S. Machado, and L.A. Avaca, J. Power Sources, 156, 300(2006). https://doi.org/10.1016/j.jpowsour.2005.06.015
  8. D.-H. Lim, D.-H. Choi, W.-D. Lee, and H.-I. Lee, Appl. Catal. B-environ., 89, 484(2009). https://doi.org/10.1016/j.apcatb.2009.01.011
  9. J. Ribeiro, D.M. dos Anjos, K.B. Kokoh, C. Coutanceau, J.-M. Léger, P. Olivi, A.R. de Andrade, and G. Tremiliosi-Filho, Electrochim. Acta, 52, 6997(2007). https://doi.org/10.1016/j.electacta.2007.05.017
  10. T.S. Almeida, K.B. Kokoh, and A.R. de Andrade, Int. J. Hydrogen Energy, 36, 3803(2011). https://doi.org/10.1016/j.ijhydene.2010.12.066
  11. A. Bonesi, W.E. Triaca, and A.M. Castro Luna, Port. Electrochim. Acta, 27, 193(2009). https://doi.org/10.4152/pea.200903193
  12. L. Jiang, L. Colmenares, Z. Jusys, G.Q. Sun, and R.J. Behm, Electrochim. Acta, 53, 377(2007). https://doi.org/10.1016/j.electacta.2007.01.047
  13. S. Mukarjee, S. Srinivasan, M.P. Soriaga, and J. Mcrreen, J. Electrochem. Soc., 142, 1409(1995). https://doi.org/10.1149/1.2048590
  14. C. Audo, J.F. Lambert, M. Che, and B. Didillon, Catal. Today, 65, 157(2001). https://doi.org/10.1016/S0920-5861(00)00589-7
  15. C.G. Granqvist, and R.A. Buhrman, J. Catal., 42, 477(1976). https://doi.org/10.1016/0021-9517(76)90125-1
  16. C.G. Granqvist, and R.A. Buhrman, J. Appl. Phys., 47, 2200(1976). https://doi.org/10.1063/1.322870
  17. P. Ehrburger, and P.R. Walker Jr., J. Catal., 55, 63(1978). https://doi.org/10.1016/0021-9517(78)90187-2
  18. R. Woods, in: A.J. Bard (Ed.), Electroanalytical Chemistry, Marcel Dekker, New York (1976).
  19. A. Bonesi, G. Garaventa, W.E. Triaca, and A.M. Castro Luna, Int. J. Hydrogen Energy, 33, 3499(2008). https://doi.org/10.1016/j.ijhydene.2007.12.056
  20. D.A.J. Rand, and R. Woods, J. Electroanal. Chem. Interfacial Electrochem., 36, 57(1972). https://doi.org/10.1016/S0022-0728(72)80445-5
  21. E.V. Spinace’, A.O. Neto, and M. Linardi, J. Power Sources, 129, 121(2004). https://doi.org/10.1016/j.jpowsour.2003.11.056
  22. F. Vigier, C. Coutanceau, F. Hahn, E.M. Belgsir, and C. Lamy, J. Electroanal. Chem., 563, 81(2004). https://doi.org/10.1016/j.jelechem.2003.08.019
  23. A.R. Bonesi, M.S. Moreno, W.E. Triaca, and A.M. Castro Luna, Int. J. Hydrogen Energy, 35, 5999(2010). https://doi.org/10.1016/j.ijhydene.2009.12.093
  24. E.M. Cunha, J. Ribeiro, K.B. Kokoh, and A. R. de Andrade, Int. J. Hydrogen Energy, 36, 11034(2011). https://doi.org/10.1016/j.ijhydene.2011.06.011
  25. F.L.S. Purgato, P. Olivi, J.-M. Léger, A.R. de Andrade, G. Tremiliosi- Filho, and E.R. Gonzalez, J. Electroanal.Chem., 628, 81(2009). https://doi.org/10.1016/j.jelechem.2009.01.010
  26. E.M. Crabb, R. Marshall, and D. Thompsett, J. Electrochem. Soc., 147, 4440(2000). https://doi.org/10.1149/1.1394083
  27. F. Colmati, E. Antolini, and E.R. Gonzalez, J. Alloys Compd., 456, 264(2008). https://doi.org/10.1016/j.jallcom.2007.02.015
  28. E.V. Spinace’, M. Linardi, and A.O. Neto, Electrochem. Commun., 7, 365(2005). https://doi.org/10.1016/j.elecom.2005.02.006
  29. V. Radmiloviae, H.A. Gasteiger, and P.N. Ross Jr., J. Catal., 154, 98(1995). https://doi.org/10.1006/jcat.1995.1151
  30. S. Beyhan, J.-M. Leger, and F. Kadýrgan, Appl. Catal., B: Environ., 130-131, 305(2013). https://doi.org/10.1016/j.apcatb.2012.11.007
  31. F. Colmati, E. Antolini, and E.R. Gonzalez, Appl. Catal. B, 73, 106(2007). https://doi.org/10.1016/j.apcatb.2006.06.013
  32. R.S. Jayashree, S.K. Yoon, F.R. Brushett, P.O. Lopez-Montesinos,D. Natarajan, L.J. Markoski, and P.J.A. Kenis, J. Power Sources, 195, 3569(2010). https://doi.org/10.1016/j.jpowsour.2009.12.029
  33. K. Ponmani, S. Durga, M. Gowdhamamoorthi, S. Kiruthika, and B. Muthukumaran, Ionics, 20, 1579(2014). https://doi.org/10.1007/s11581-014-1118-z
  34. A. Arun, M. Gowdhamamoorthi, S. Kiruthika, and B. Muthukumaran, J. Electrochem. Soc., 161, F311(2014). https://doi.org/10.1149/2.067403jes
  35. F.A. Cotton, and G. Wilkinson, Advanced inorganic chemistry, Wiley Interscience, New York, pp. 812(1988).
  36. J. Tayal, B. Rawat, and S. Basu, Int. J. Hydrogen Energy, 36, 14884(2011). https://doi.org/10.1016/j.ijhydene.2011.03.035
  37. A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang, N. S. Marinkovic, P. Liu, A. I. Frenkel, and R. R. Adzic, Nature Mater., 8, 325(2009). https://doi.org/10.1038/nmat2359
  38. J. Ribeiro, D.M. dos Anjos, J.-M. Leger, F. Hahn, P. Olivi, A.R. de Andrade, G. Tremiliso-Filho, and K.B. Kokoh, J. Appl. Electrochem., 38, 653(2008). https://doi.org/10.1007/s10800-008-9484-8
  39. T.S. Almeida, L.M. Palma, C. Morais, K.B. Kokoh, and A.R. de Andrade, J. Electrochem. Soc., 160, F965(2013). https://doi.org/10.1149/2.025309jes
  40. A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, and E.V. Spinace, J. Power Sources, 166, 87(2007). https://doi.org/10.1016/j.jpowsour.2006.12.088
  41. M.L. Calegaro, H.B. Suffredini, S.A.S. Machado, and L.A. Avaca, J. Power Sources, 156, 300(2006). https://doi.org/10.1016/j.jpowsour.2005.06.015
  42. L. Jiang, G. Sun, Z. Zhou, W. Zhou, and Q. Xin, Catal. Today, 93-95, 665(2004). https://doi.org/10.1016/j.cattod.2004.06.029
  43. M. Zhu, G. Sun, S. Yan, H. Li, and Q. Xin, Energy & Fuels, 23, 403(2009). https://doi.org/10.1021/ef800726b
  44. C. Lamy, E.M. Belgsir, and J.-M. Léger, J. Appl. Electrochem., 31, 799(2001). https://doi.org/10.1023/A:1017587310150
  45. F. Wang, Y. Zheng, and Y. Guo, Fuel cells, 6, 1100(2010).
  46. L. Jiang, G. Sun, S. Sun, J. Liu, S. Tang, H. Li, B. Zhou, and Q. Xin, Electrochim. Acta, 50, 5384(2005). https://doi.org/10.1016/j.electacta.2005.03.018
  47. W.J. Zhou, W.Z. Li, S.Q. Song, Z.H. Zhou, L.H. Jiang, and G.Q. Sun, J. Power Sources, 131, 217(2004). https://doi.org/10.1016/j.jpowsour.2003.12.040
  48. H. Bönnemann, W. Brijoux, R. Brinkmann, R. Fretzen, T. Joussen, R. Köppler, B. Korall, P. Neiteler, and J. Richter, J. Mol. Catal., 86, 129(1994). https://doi.org/10.1016/0304-5102(93)E0148-A
  49. E.R. Choban, L.J. Markoski, A. Wieckowski, and P.J.A. Kenis, J. Power Sources, 128, 54(2004). https://doi.org/10.1016/j.jpowsour.2003.11.052
  50. E. Kjeang, N. Djilali, and D. Sinton, J. Power Sources, 186, 353(2009). https://doi.org/10.1016/j.jpowsour.2008.10.011
  51. M.S. Whittingham, R.F. Savinell, and T.A. Zawodzinski, Chem. Rev., 104, 4243(2004). https://doi.org/10.1021/cr020705e

Cited by

  1. Pt-Ni and Pt-M-Ni (M = Ru, Sn) Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review vol.10, pp.12, 2017, https://doi.org/10.3390/en10010042