Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles

Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구

  • Received : 2015.05.26
  • Accepted : 2015.08.05
  • Published : 2015.10.20


ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.


ZnO nanoparticle;Core-shell structure;Photocatalyst;Magnetic property


  1. Wang, J. X.; Sun, X. W.; Wei, A.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z. L. Appl. Phys. Lett 2006, 88, 233106.
  2. Zang, J. F.; Li, C. M.; Cui, X. Q.; Wang, J. X.; Sun, X. W.; Dong, H.; Sun, C. Q. Electroanalysis 2007, 19, 1008.
  3. Chakrabarti, S.; Dutta, B. K. J. Hazard. Mater. B 2004, 112, 269.
  4. Xie, J.; Li, Y. T.; Zhao, W.; Bian, L.; Wei, Y. Powder Technol. 2011, 207, 140.
  5. Habibi, M. H.; Mikhak, M. Appl. Surf. Sci. 2012, 258, 6745.
  6. Habibi, M. H.; Sheibani, R. J. Adv. Oxid. Tech. 2010, 13, 192.
  7. Zhai, J.; Tao, X.; Pu, Y. Appl. Surf. Sc. 2010, 257, 393.
  8. Collard, X.; Hajj, M. E.; Su, B. L.; Aprile, C. Microp. Mesop. Mater. 2014, 184, 90.
  9. Shao, R.; Sun, L.; Tang, L.; Chen, Z. Chem. Eng. J. 2013, 217, 185.
  10. Chen, L. Y.; Xu, Z. X.; Dai, H.; Zhang, S. T. J. Alloys Compd. 2010, 497, 221.
  11. Park, M.; Seo, S.; Lee, I. S.; Jung, J. H. Chem. Commun. 2010, 4478.
  12. Xuan, S. H.; Wang, F.; Gong, X. L.; Kong, S. K.; Yu, J. C.; Leung, K. C. F. Chem. Commun. 2011. 2514.
  13. Beydoun, D.; Amal, R.; Low, G. K.-C.; McEvoy, S. J. Phys. Chem. B 2000, 104, 4387.
  14. Veith, M.; Haas, M.; Huch, V. Chem. Mater. 2005, 17, 95.
  15. Li, X. Y.; Hou, Y.; Zhao, Q. D.; Teng, W.; Hu, X. J.; Chen, G. H. Chemosphere 2011, 82, 581.
  16. Yuan, Z. H.; Zhang, L. D. Synthesis, J. Mater. Chem. 2001, 11, 1265.
  17. Fu, Y. S.; Wang, X. Ind. Eng. Chem. Res. 2011, 50, 7210.
  18. Shao, R.; Sun, L.; Tang, L.; Chen, Z. Chem. Eng. J. 2013, 217, 185.
  19. Chen, Y.; Bangall, D. M.; Koh, H.; Park, K.; Hiraga, K.; Zhu, Z.; Yao, T. J. Appl. Phys. 1998, 84, 3912.
  20. Jin, B. J.; Bae, S. H.; Lee, S. Y.; Im, S. Mater. Sco. Eng. B 2000, 71, 301.
  21. Chung, S. W.; Yu, J.-Y.; Health, J. R. Appl. Phys. Lett. 2000, 76, 2068.
  22. Wu, Y.; Yan, H.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. Chem. Eur. J. 2002, 8, 1260.<1260::AID-CHEM1260>3.0.CO;2-Q
  23. Lieri, G. S.; Groppelli, S.; Nelli, P.; Tintinelli, A.; Giunta, G. Sens. Actuators B 1995, 25, 588.
  24. Kandavelu, V.; Kastien, H.; Thampi, K. R. Appl. Catal. B: Environmental 2004, 48, 101.
  25. (a) Habibi, M. H.; Mikhak, M. Curr. Nanoscience 2011, 7, 603;
  26. (b) Egerton, T. A.; Tooley, I. R. J. Phys. Chemistry B 2004, 108, 5066.
  27. Habibi, M. H.; Mokhtari, R. J. Sol-Gel Sc. Tech. 2011, 59, 352.
  28. Habibi, M. H.; Zendehdel, M. J. Inorg. Organometall. Poly. 2011, 21, 634.
  29. Habibi, M. H.; Zndehdel, M. Curr. Nanoscience 2010, 6, 642.
  30. Kim, D. J.; Kang, J. Y.; Kim, K. S. J. Ind. Eng. Chem. 2010, 16, 997.
  31. Li, Z.; Mi, L. W.; Chen, W. H.; Hou, H. W.; Liu, C. T.; Wang, H. L.; Zheng, Z.; Shen, C. Y. CrystEngComm 2012, 14, 3965.
  32. Baek, M. H.; Jung, W. C.; Yoon, J. W.; Hong, J. S.; Lee, Y. S.; Suh, J. K. J. Ind. Eng. Chem. 2013, 19, 469.
  33. Amali, A. J.; Rana, R. K. Greem Chem. 2009, 11, 1781.
  34. Jang, Y. J.; Kim, S.; Jun, S. W.; Kim, B. H.; Hwang, S.; Song, I. K.; Kim, B. M.; Hyeon, T. Chem. Commun. 2011, 3601.
  35. Lee, Y. C.; Yang, J. W. J. Ind. Eng. Chem. 2012, 18, 1178.
  36. Senapati, K. K.; Borgohain, C.; Phukan, P. Catal. Sci. Technol. 2012, 10, 1039.
  37. Hassan, A. B.; Bazzi, R.; Cabuil, V. Angew. Chem. Int. Edit. 2009, 48, 7180.
  38. Wilson, A.; Mishra, S. R.; Gupta, R.; Ghosh, K. J. Magn. Mater. 2012, 324, 2597.
  39. Fujishima, A.; Honda, K. Nature 1972, 238, 37.
  40. Li, Z.; Mi, L. W.; Chen, W. H.; Hou, H. W.; Liu, C. T.; Wang, H. L.; Zheng, Z.; Shen, C. Y. CrystEngComm 2012, 14, 3965.
  41. Hung, S. T.; Chang, C. J.; Hsu, M. H. J. Hazard. Mater. 2011, 198, 307.
  42. Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytide, S. G.; Falaras, P. Appl. Catal. B: Environmental 2003, 42, 187.
  43. Diamanti, M. V.; Ormellese, M.; Martin, E.; Lanzutti, A.; Mele, A.; Pedeferri, M. P. J. Hazard. Mater. 2011, 186, 2103.