DOI QR코드

DOI QR Code

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles

Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구

  • Received : 2015.05.26
  • Accepted : 2015.08.05
  • Published : 2015.10.20

Abstract

ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

Keywords

ZnO nanoparticle;Core-shell structure;Photocatalyst;Magnetic property

References

  1. Wang, J. X.; Sun, X. W.; Wei, A.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z. L. Appl. Phys. Lett 2006, 88, 233106. https://doi.org/10.1063/1.2210078
  2. Zang, J. F.; Li, C. M.; Cui, X. Q.; Wang, J. X.; Sun, X. W.; Dong, H.; Sun, C. Q. Electroanalysis 2007, 19, 1008. https://doi.org/10.1002/elan.200603808
  3. Chakrabarti, S.; Dutta, B. K. J. Hazard. Mater. B 2004, 112, 269. https://doi.org/10.1016/j.jhazmat.2004.05.013
  4. Xie, J.; Li, Y. T.; Zhao, W.; Bian, L.; Wei, Y. Powder Technol. 2011, 207, 140. https://doi.org/10.1016/j.powtec.2010.10.019
  5. Habibi, M. H.; Mikhak, M. Appl. Surf. Sci. 2012, 258, 6745. https://doi.org/10.1016/j.apsusc.2012.03.042
  6. Habibi, M. H.; Sheibani, R. J. Adv. Oxid. Tech. 2010, 13, 192.
  7. Zhai, J.; Tao, X.; Pu, Y. Appl. Surf. Sc. 2010, 257, 393. https://doi.org/10.1016/j.apsusc.2010.06.091
  8. Collard, X.; Hajj, M. E.; Su, B. L.; Aprile, C. Microp. Mesop. Mater. 2014, 184, 90. https://doi.org/10.1016/j.micromeso.2013.09.040
  9. Shao, R.; Sun, L.; Tang, L.; Chen, Z. Chem. Eng. J. 2013, 217, 185. https://doi.org/10.1016/j.cej.2012.11.109
  10. Chen, L. Y.; Xu, Z. X.; Dai, H.; Zhang, S. T. J. Alloys Compd. 2010, 497, 221. https://doi.org/10.1016/j.jallcom.2010.03.016
  11. Park, M.; Seo, S.; Lee, I. S.; Jung, J. H. Chem. Commun. 2010, 4478.
  12. Xuan, S. H.; Wang, F.; Gong, X. L.; Kong, S. K.; Yu, J. C.; Leung, K. C. F. Chem. Commun. 2011. 2514.
  13. Beydoun, D.; Amal, R.; Low, G. K.-C.; McEvoy, S. J. Phys. Chem. B 2000, 104, 4387. https://doi.org/10.1021/jp992088c
  14. Veith, M.; Haas, M.; Huch, V. Chem. Mater. 2005, 17, 95. https://doi.org/10.1021/cm0401802
  15. Li, X. Y.; Hou, Y.; Zhao, Q. D.; Teng, W.; Hu, X. J.; Chen, G. H. Chemosphere 2011, 82, 581. https://doi.org/10.1016/j.chemosphere.2010.09.068
  16. Yuan, Z. H.; Zhang, L. D. Synthesis, J. Mater. Chem. 2001, 11, 1265. https://doi.org/10.1039/b006994i
  17. Fu, Y. S.; Wang, X. Ind. Eng. Chem. Res. 2011, 50, 7210. https://doi.org/10.1021/ie200162a
  18. Shao, R.; Sun, L.; Tang, L.; Chen, Z. Chem. Eng. J. 2013, 217, 185. https://doi.org/10.1016/j.cej.2012.11.109
  19. Chen, Y.; Bangall, D. M.; Koh, H.; Park, K.; Hiraga, K.; Zhu, Z.; Yao, T. J. Appl. Phys. 1998, 84, 3912. https://doi.org/10.1063/1.368595
  20. Jin, B. J.; Bae, S. H.; Lee, S. Y.; Im, S. Mater. Sco. Eng. B 2000, 71, 301. https://doi.org/10.1016/S0921-5107(99)00395-5
  21. Chung, S. W.; Yu, J.-Y.; Health, J. R. Appl. Phys. Lett. 2000, 76, 2068. https://doi.org/10.1063/1.126257
  22. Wu, Y.; Yan, H.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. Chem. Eur. J. 2002, 8, 1260. https://doi.org/10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
  23. Lieri, G. S.; Groppelli, S.; Nelli, P.; Tintinelli, A.; Giunta, G. Sens. Actuators B 1995, 25, 588. https://doi.org/10.1016/0925-4005(95)85128-3
  24. Kandavelu, V.; Kastien, H.; Thampi, K. R. Appl. Catal. B: Environmental 2004, 48, 101. https://doi.org/10.1016/j.apcatb.2003.09.022
  25. (a) Habibi, M. H.; Mikhak, M. Curr. Nanoscience 2011, 7, 603; https://doi.org/10.2174/157341311796196754
  26. (b) Egerton, T. A.; Tooley, I. R. J. Phys. Chemistry B 2004, 108, 5066. https://doi.org/10.1021/jp0378992
  27. Habibi, M. H.; Mokhtari, R. J. Sol-Gel Sc. Tech. 2011, 59, 352. https://doi.org/10.1007/s10971-011-2510-z
  28. Habibi, M. H.; Zendehdel, M. J. Inorg. Organometall. Poly. 2011, 21, 634. https://doi.org/10.1007/s10904-011-9500-z
  29. Habibi, M. H.; Zndehdel, M. Curr. Nanoscience 2010, 6, 642. https://doi.org/10.2174/157341310793348614
  30. Kim, D. J.; Kang, J. Y.; Kim, K. S. J. Ind. Eng. Chem. 2010, 16, 997. https://doi.org/10.1016/j.jiec.2010.07.005
  31. Li, Z.; Mi, L. W.; Chen, W. H.; Hou, H. W.; Liu, C. T.; Wang, H. L.; Zheng, Z.; Shen, C. Y. CrystEngComm 2012, 14, 3965. https://doi.org/10.1039/c2ce00018k
  32. Baek, M. H.; Jung, W. C.; Yoon, J. W.; Hong, J. S.; Lee, Y. S.; Suh, J. K. J. Ind. Eng. Chem. 2013, 19, 469. https://doi.org/10.1016/j.jiec.2012.08.026
  33. Amali, A. J.; Rana, R. K. Greem Chem. 2009, 11, 1781. https://doi.org/10.1039/b916261p
  34. Jang, Y. J.; Kim, S.; Jun, S. W.; Kim, B. H.; Hwang, S.; Song, I. K.; Kim, B. M.; Hyeon, T. Chem. Commun. 2011, 3601.
  35. Lee, Y. C.; Yang, J. W. J. Ind. Eng. Chem. 2012, 18, 1178. https://doi.org/10.1016/j.jiec.2012.01.005
  36. Senapati, K. K.; Borgohain, C.; Phukan, P. Catal. Sci. Technol. 2012, 10, 1039.
  37. Hassan, A. B.; Bazzi, R.; Cabuil, V. Angew. Chem. Int. Edit. 2009, 48, 7180. https://doi.org/10.1002/anie.200902181
  38. Wilson, A.; Mishra, S. R.; Gupta, R.; Ghosh, K. J. Magn. Mater. 2012, 324, 2597. https://doi.org/10.1016/j.jmmm.2012.02.009
  39. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  40. Li, Z.; Mi, L. W.; Chen, W. H.; Hou, H. W.; Liu, C. T.; Wang, H. L.; Zheng, Z.; Shen, C. Y. CrystEngComm 2012, 14, 3965. https://doi.org/10.1039/c2ce00018k
  41. Hung, S. T.; Chang, C. J.; Hsu, M. H. J. Hazard. Mater. 2011, 198, 307. https://doi.org/10.1016/j.jhazmat.2011.10.043
  42. Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytide, S. G.; Falaras, P. Appl. Catal. B: Environmental 2003, 42, 187. https://doi.org/10.1016/S0926-3373(02)00233-3
  43. Diamanti, M. V.; Ormellese, M.; Martin, E.; Lanzutti, A.; Mele, A.; Pedeferri, M. P. J. Hazard. Mater. 2011, 186, 2103. https://doi.org/10.1016/j.jhazmat.2010.12.128