DOI QR코드

DOI QR Code

Stability and Electronic Properties of the Adsorption of Molecular Hydrogen on Metal-containing Single-walled Carbon Nanotubes

  • Michael, Mananghaya
  • Received : 2015.03.24
  • Accepted : 2015.08.31
  • Published : 2015.10.20

Abstract

The binding ability and hydrogen storage capacity of nitrogen doped carbon nanotube with divacancy (4NDCNxNT) that is decorated with transition metals was investigated based on density functional theory calculations. Results indicate that scandium shows an ideal reversible hydrogen binding capability with promising system-weight efficiency compared with other transition metals when functionalized with 4ND-CNxNT. The (Sc/4ND)10-CNxNT can store up to 50H2 molecules, corresponding to a maximum gravimetric density of 5.8 wt%. Detailed structural stability and electronic properties were reported as hydrogen molecules were absorbed. It takes about 0.16 eV/H2 to add one H2 molecule, which assures reversible storage of H2 molecules under ambient conditions.

Keywords

Binding energy;Density functional theory;Porphyrin defects;Scandium;Single-walled carbon nanotubes

References

  1. Mananghaya, M. J. Korean Chem. Soc. 2012, 56, 34. https://doi.org/10.5012/jkcs.2012.56.1.034
  2. Mananghaya, M. J. Chem. Sci. 2014, 126, 1737. https://doi.org/10.1007/s12039-014-0744-3
  3. Mananghaya, M. J. Chem. Sci. 2015, 127, 751. https://doi.org/10.1007/s12039-015-0831-0
  4. Mananghaya, M. J. Korean Chem. Soc. 2015, 59, 1.
  5. Yu, S. S.; Wen, Q. B.; Zheng, W. T.; Jiang, Q. Nanotechnology, 2007, 18, 165702. https://doi.org/10.1088/0957-4484/18/16/165702
  6. Qiao, L.; Zheng, W. T.; Xu, H.; Zhang, L.; Jiang, Q. J. Chem. Phys. 2007, 126, 164702. https://doi.org/10.1063/1.2722750
  7. Park, N.; Hong, S.; Kim, G.; Jhi, S. H. J. Am. Chem. Soc. 2007, 129, 8999. https://doi.org/10.1021/ja0703527
  8. Sun, Q.; Wang, Q.; Jena, P.; Kawazoe, Y. J. Am. Chem. Soc. 2005, 129, 14582.
  9. Mananghaya, M. Int. J. Hydr. En. 2015, 40, 9352. https://doi.org/10.1016/j.ijhydene.2015.05.087
  10. Delley, B. J. Chem. Phys. 1990, 92, 508. https://doi.org/10.1063/1.458452
  11. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  12. Monkhorst, H. J.; Pack, J. D. Phys Rev B 1976, 13, 5188. https://doi.org/10.1103/PhysRevB.13.5188
  13. Choi, H. C.; Bae, S. Y.; Park, J. et al., App. Phys. Lett. 2004, 85, 5742. https://doi.org/10.1063/1.1835994
  14. Terrones, M.; Kamalakaran, R.; Seeger, T.; Ruhle, M. Chem. Commun. 2000, 23, 2335.
  15. Droppa, R.; Ribeiro, C. T. M.; Zanatta, A. R.; Dos Santos, M. C.; Alvarez, F. Phys. Rev. B 2004, 69, 045405. https://doi.org/10.1103/PhysRevB.69.045405
  16. Villalpando-Paez, F.; Zamudio, A.; Elias, A. L. et al., Chem. Phys. Lett. 2006, 424, 345. https://doi.org/10.1016/j.cplett.2006.04.074
  17. Zhao, J.; Ding, Y.; Wang, X. G.; Cai, Q.; Wang, X. G. Dia. Rel. Mat., 2011, 20, 36. https://doi.org/10.1016/j.diamond.2010.11.012
  18. Mananghaya, M. Bull. Korean Chem. Soc. 2014, 35, 253. https://doi.org/10.5012/bkcs.2014.35.1.253
  19. Mananghaya, M.; Rodulfo, E.; Santos, G. N.; Villagracia, A. R. J. Nanomater. 2012, 2012, 104891.
  20. Sudan, P.; Züttel, A.; Mauron, P.; Emmenegger, C.; Wenger, P.; Schlapbach, L. Carbon, 2003, 41, 2377. https://doi.org/10.1016/S0008-6223(03)00290-2
  21. Henwood, D.; Carey, J. D. Phys. Rev. B., 2007, 75, 245413. https://doi.org/10.1103/PhysRevB.75.245413
  22. Tibbetts, G. G.; Meisner, G. P.; Olk, C. H. Carbon, 2001, 39, 2291. https://doi.org/10.1016/S0008-6223(01)00051-3
  23. Mananghaya, M. J. Mol. Liq. 2015, Article in Press.
  24. Mananghaya, M.; Rodulfo, E.; Santos, G. N.; Villagracia, A. R. J. Nanotechnol. 2012, 2012, 780815.
  25. Terrones, M.; Terrones, H.; Grobert, N. et al., App. Phys. Lett. 1999, 75, 3932. https://doi.org/10.1063/1.125498
  26. Czerw, R.; Terrones, M.; Charlier, J. C. et al., Nano Lett. 2001, 1, 457. https://doi.org/10.1021/nl015549q
  27. Terrones, M.; Ajayan, P. M.; Banhart, F. et al., App. Phys. A 2002, 74, 355.
  28. Golberg, D.; Dorozhkin, P. S.; Bando, Y. et al., App. Phys. A 2003, 76, 499. https://doi.org/10.1007/s00339-002-2047-7
  29. Villalpando-Páez, F.; Romero, A. H.; Muñoz-Sandoval, E.; Martínez, L. M.; Terrones, H.; Terrones, M. Chem. Phys. Lett. 2004, 386, 137. https://doi.org/10.1016/j.cplett.2004.01.052
  30. Ye, Y.; Ahn, C. C.; Witham, C.; Fultz, B.; Liu, J.; Rinzler, A. G. et al., App. Phys. Lett. 2005, 74, 2307.
  31. Suenaga, K.; Johansson, M. P.; Hellgren, N. et al., Chem. Phys. Lett. 1999, 300, 695. https://doi.org/10.1016/S0009-2614(98)01425-0
  32. Lim, S. H.; Elim, H. I.; Gao, X. Y. et al., Phys. Rev. B 2006, 73, 045402. https://doi.org/10.1103/PhysRevB.73.045402

Cited by

  1. Structural Asymmetry-Facilitated Tunability of Spin Distribution in the (10, 0) Carbon Nanotube Induced by Charging vol.46, pp.7, 2017, https://doi.org/10.1007/s11664-016-5244-4
  2. Modeling of single-walled carbon nanotubes functionalized with carboxylic and amide groups towards its solubilization in water vol.212, 2015, https://doi.org/10.1016/j.molliq.2015.10.013
  3. Solubility of amide functionalized single wall carbon nanotubes: A quantum mechanical study vol.242, 2017, https://doi.org/10.1016/j.molliq.2017.07.107
  4. Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1) vol.26, pp.6, 2016, https://doi.org/10.3740/MRSK.2016.26.6.298
  5. Scandium and Titanium Containing Single-Walled Carbon Nanotubes for Hydrogen Storage: a Thermodynamic and First Principle Calculation vol.6, pp.1, 2016, https://doi.org/10.1038/srep27370
  6. Nitrogen substitution and vacancy mediated scandium metal adsorption on carbon nanotubes vol.23, pp.6, 2017, https://doi.org/10.1007/s10450-017-9901-6
  7. Theoretical investigation of the solubilization of COOH-functionalized single wall carbon nanotubes in water vol.215, 2016, https://doi.org/10.1016/j.molliq.2016.01.041
  8. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube vol.180, 2016, https://doi.org/10.1016/j.matchemphys.2016.06.018
  9. Electronic, topological phase and optical properties of XPdBi (X = Lu, Sc) nano-layers vol.616, 2016, https://doi.org/10.1016/j.tsf.2016.08.036
  10. Hydrogen adsorption on boron nitride nanotubes functionalized with transition metals vol.41, pp.31, 2016, https://doi.org/10.1016/j.ijhydene.2016.05.225
  11. Attachment of CO to a (6, 6) CNT with a Sc adsorbate atom pp.1572-9001, 2018, https://doi.org/10.1007/s11224-018-1202-5
  12. Hydrogen adsorption of Ti-decorated boron nitride nanotube: a density functional based tight binding molecular dynamics study vol.24, pp.7, 2018, https://doi.org/10.1007/s10450-018-9971-0
  13. Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: A density functional based tight binding molecular dynamics study vol.40, pp.8, 2019, https://doi.org/10.1002/jcc.25776