DOI QR코드

DOI QR Code

A DELAY DYNAMIC MODEL FOR HIV INFECTED IMMUNE RESPONSE

  • BERA, S.P. ;
  • MAITI, A. ;
  • SAMANTA, G.P.
  • Received : 2014.01.14
  • Accepted : 2015.05.20
  • Published : 2015.09.30

Abstract

Human Immune Deficiency Virus (or simply HIV) induces a persistent infection that leads to AIDS causing death in almost every infected individual. As HIV affects the immune system directly by attacking the CD4+ T cells, to exterminate the infection, the natural immune system produces virus-specific cytotoxic T lymphocytes(CTLs) that kills the infected CD4+ T cells. The reduced CD4+ T cell count produce reduced amount of cytokines to stimulate the production of CTLs to fight the invaders that weakens the body immunity succeeding to AIDS. In this paper, we introduce a mathematical model with discrete time-delay to represent this cell dynamics between CD4+ T cells and the CTLs under HIV infection. A modified functional form has been considered to describe the infection mechanism. Characteristics of the system are studied through mathematical analysis. Numerical simulations are carried out to illustrate the analytical findings.

Keywords

HIV;immune response;stability;delay;Hopfbifurcation

References

  1. S. Sharma and G.P. Samanta, Dynamical behaviour of an HIV/AIDS epidemic model, Differential Equations and Dynamical Systems 22 (2014), 369–395. https://doi.org/10.1007/s12591-013-0173-7
  2. E. Vergu, A. Mallet and J. Golmard, A modelling approach to the impact of HIV mutations on the immune system, Computers Biol. Med. 35 (2005), 1–24. https://doi.org/10.1016/j.compbiomed.2004.01.001
  3. P.A. Volberding and S.G. Deeks, Antiretroviral therapy and management of HIV infection, Lancet 3 (2010), 49–62. https://doi.org/10.1016/S0140-6736(10)60676-9
  4. L. Wang and M.Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T-cells, Math. Biosci. 200 (2006), 44–57. https://doi.org/10.1016/j.mbs.2005.12.026
  5. D.Wodarz and M. Nowak, Specific therapies could lead to long-term immunological control of HIV, Proc. Natl. Acad. Sci. 96 (1999), 464–469. https://doi.org/10.1073/pnas.96.25.14464
  6. A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard and D.D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582
  7. P. Nelson, J. Murray and A. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci. 163 (2000), 201–215. https://doi.org/10.1016/S0025-5564(99)00055-3
  8. M. Nowak, S. Bonhoeffer, G. Shaw and R. May, Antiviral drug treatment: dynamics of resistance in free virus and infected cell populations, J. Theor. Biol. 184 (1997), 203–217. https://doi.org/10.1006/jtbi.1996.0307
  9. A.S. Perelson, D.E. Kirschner and R. DeBoer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci. 114 (1993), 81-125. https://doi.org/10.1016/0025-5564(93)90043-A
  10. A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41 (1999), 3–44. https://doi.org/10.1137/S0036144598335107
  11. G.P. Samanta, Analysis of a nonautonomous HIV/AIDS model. Math. Model. Nat. Phenom. 5 (2010), 70–95. https://doi.org/10.1051/mmnp/20105604
  12. G.P. Samanta, Analysis of a nonautonomous HIV/AIDS epidemic model with distributed time delay, Math. Model. Anal. 15 (2010), 327–347. https://doi.org/10.3846/1392-6292.2010.15.327-347
  13. G.P. Samanta, Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay, Nonlinear Anal. Real World Appl. 12 (2011), 1163–1177. https://doi.org/10.1016/j.nonrwa.2010.09.010
  14. M. Stafford, C. Lawrence, Y. Cao, E. Daar, D. Ho and A. Perelson, Modelling plasma virus concentration during primary HIV infection, J. Theor. Biol. 203 (2000), 285–301. https://doi.org/10.1006/jtbi.2000.1076
  15. S. Sharma and G.P. Samanta, Dynamical behaviour of a tumor-immune system with chemotherapy and optimal control, J. Nonlinear Dynamics 2013 (2013), Article ID 608598, DOI 10.1155/2013/608598. https://doi.org/10.1155/2013/608598
  16. A.B. Gumel, C.C. McCluskey and P. van den Driessche, Mathematical study of a stagedprogressive HIV model with imperfect vaccine, Bull. Math. Biol. 68 (2006), 2105–2128. https://doi.org/10.1007/s11538-006-9095-7
  17. R.V. Culshaw, S. Ruan and R.J. Spiteri, Optimal treatment by maximisining immune response, J. Math. Biol. 48 (2004), 545–562. https://doi.org/10.1007/s00285-003-0245-3
  18. N. Dalal, D. Greenhalgh and X. Mao, Mathematical modelling of internal HIV dynamics, Discrete and Continuous Dynamical Systems - Series B 12 (2009), 305–321. https://doi.org/10.3934/dcdsb.2009.12.305
  19. K. Gopalsamy, Stability and Oscillations in Delay-Differential Equations of Population Dynamics, Kluwer, Dordrecht, 1992.
  20. HIV infection and AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, USA, (2006), www.niaid.nih.gov.
  21. A.V.M. Herz, S. Bonhoeffer, R.M. Anderson, R.M. May and M.A. Nowak, Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. Nat. Acad. Sci. USA. 93 (1996), 7247–7251. https://doi.org/10.1073/pnas.93.14.7247
  22. H.W. Hethcote, M.A. Lewis and P. van den Driessche, An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol. 27 (1989), 49–64. https://doi.org/10.1007/BF00276080
  23. T.W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol. 46 (2003), 17–30. https://doi.org/10.1007/s00285-002-0165-7
  24. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, London, 1993.
  25. R.M. May and R.M. Anderson, Transmission dynamics of HIV infection, Nature 326 (1987), 137–142. https://doi.org/10.1038/326137a0
  26. S. Bonhoeffer, G. Shaw, R. May and M. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. 94 (1997), 6971–6976. https://doi.org/10.1073/pnas.94.13.6971
  27. S. Bajaria, G. Webb and D. Kirschner, Predicting differential responses to structured treatment interruptions during HAART, Bull. Math. Biol. 66 (2004), 1093–1118. https://doi.org/10.1016/j.bulm.2003.11.003
  28. E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM. J. Math. Anal. 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086
  29. S. Bonhoeffer, J. Coffin and M. Nowak, Human Immunodeficiency Virus drug therapy and virus load, J. Virol. 71 (1997), 3275–3278.
  30. G. Birkhoff and G.C. Rota, Ordinary Differential Equations, Ginn and Co., Boston, 1982.
  31. L.M. Cai, X. Li, M. Ghosh and B. Guo, Stability of an HIV/AIDS epidemic model with treatment. J. Comput. Appl. Math. 229 (2009), 313–323. https://doi.org/10.1016/j.cam.2008.10.067
  32. D. Callaway and A. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol. 64 (2002), 29–64. https://doi.org/10.1006/bulm.2001.0266
  33. T.W. Chun, D.C. Nickle, J.S. Justement, D. Large, A. Semerjian, M.E. Curlin, M.A. O’Shea, C.W. Hallahan, M. Daucher and other authors, HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir, J. Clin. Invest. 115 (2005), 3250–3255. https://doi.org/10.1172/JCI26197
  34. M.C. Connell, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci. 181 (2003), 1–16. https://doi.org/10.1016/S0025-5564(02)00149-9
  35. R.V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci. ,165 (2000), 27–39. https://doi.org/10.1016/S0025-5564(00)00006-7
  36. M. Bachar and A. Dorfmayr, HIV treatment models with time delay, C. R. Biol. 327 (2004), 983–994. https://doi.org/10.1016/j.crvi.2004.08.007
  37. AIDS epidemic update, UNAIDS, (2005), www.unaids.org.
  38. R.M. Anderson, The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS, J. Acquir. Immune Defic. Syndr. 1 (1988), 241–256.
  39. R.A. Arnaout, M.A. Nowak and D. Wodarz, HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing? Proc. Roy. Soc. Lond. B 265 (2000), 1347?1354. https://doi.org/10.1098/rspb.2000.1149