DOI QR코드

DOI QR Code

PAGAN I: MULTI-FREQUENCY POLARIMETRY OF AGN JETS WITH KVN

KIM, JAE-YOUNG;TRIPPE, SASCHA;SOHN, BONG WON;OH, JUNGHWAN;PARK, JONG-HO;LEE, SANG-SUNG;LEE, TAESEOK;KIM, DAEWON

  • Received : 2015.07.28
  • Accepted : 2015.10.23
  • Published : 2015.10.31

Abstract

Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to > 108.01 K and > 109.86 K, respectively. Degrees of linear polarization mL are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mL ~ 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.

Keywords

galaxies: active;jets –radio continuum: galaxies –techniques: interferometric;polarimetric

References

  1. Taylor, G. B., Gugliucci, N. E., Fabian, A. C., et al. 2006, Magnetic Fields in the Centre of the Perseus Cluster, MNRAS, 368, 1500 https://doi.org/10.1111/j.1365-2966.2006.10244.x
  2. Trippe, S., Neri, R., Krips, M., et al. 2010, The First IRAM/PdBI Polarimetric Millimeter Survey of Active Galactic Nuclei. I. Global Properties of the Sample, A&A, 515, 40 https://doi.org/10.1051/0004-6361/200913871
  3. Trippe, S., Bremer, M., Krichbaum, T. P., et al. 2012a, A Search for Linear Polarization in the Active Galactic Nucleus 3C 84 at 239 and 348 GHz, MNRAS, 425, 1192 https://doi.org/10.1111/j.1365-2966.2012.21492.x
  4. Trippe, S., Neri, R., Krips, M., et al. 2012b, The First IRAM/PdBI Polarimetric Millimeter Survey of Active Galactic Nuclei. II. Activity and Properties of Indiidual Sources, A&A, 540, 74 https://doi.org/10.1051/0004-6361/201118563
  5. Walker, R. C., Dhawan, V., Romney, J. D., et al. 2000, VLBA Absorption Imaging of Ionized Gas Associated with the Accretion Disk in NGC 1275, ApJ, 530, 233 https://doi.org/10.1086/308372
  6. Nagai, H., Suzuki, K., Asada, K., et al. 2010, VLBI Monitoring of 3C 84 (NGC 1275) in Early Phase of the 2005 Outburst, PASJ, 62, 11 https://doi.org/10.1093/pasj/62.2.L11
  7. Niinuma, K., Lee, S.-S., Kino, M., et al. 2014, VLBI Observations of Bright AGN Jets with the KVN and VERA Array (KaVA): Evaluation of Imaging Capability, PASJ, 66, 103 https://doi.org/10.1093/pasj/psu104
  8. Oh, J., Trippe, S., Kang, S., et al. 2015, PAGaN II: The Evolution of AGN Jets on Sub-Parsec Scales, JKAS, 48, 299
  9. Park, J.-H., Trippe, S., Krichbaum, T. P., et al. 2015, No Asymmetric Outflows from Sagittarius A* During the Pericenter Passage of the Gas Cloud G2, A&A, 576, 16
  10. O’Sullivan, S. P., & Gabuzda, D. C. 2009a, Three-Dimensional Magnetic Field Structure of Six Parsec-Scale Active Galactic Nuclei Jets, MNRAS, 393, 429 https://doi.org/10.1111/j.1365-2966.2008.14213.x
  11. O’Sullivan, S. P., & Gabuzda, D. C. 2009b, Magnetic Field Strength and Spectral Distribution of Six Parsec-Scale Active Galactic Nuclei Jets, MNRAS, 400, 26 https://doi.org/10.1111/j.1365-2966.2009.15428.x
  12. Pacholczyk, A. G. 1970, Radio Astrophysics. Nonthermal Processes in Galactic and Extragalactic Sources (San Francisco: Freeman)
  13. Park, J.-H., & Trippe, S. 2014, Radio Variability and Random Walk Noise Properties of Four Blazars, ApJ, 785, 76 https://doi.org/10.1088/0004-637X/785/1/76
  14. Plambeck, R. L., Bower, G. C., Rao, R., et al. 2014, Probing the Parsec-Scale Accretion Flow of 3C 84 with Millimeter Wavelength Polarimetry, ApJ, 797, 66 https://doi.org/10.1088/0004-637X/797/1/66
  15. Readhead, A. C. S. 1994, Equipartition Brightness Temperature and the Inverse Compton Catastrophe, ApJ, 426, 51 https://doi.org/10.1086/174038
  16. Roberts, D. H., Wardle, J. F. C., & Brown, L. F. 1994, Linear Polarization Radio Imaging at Milliarcsecond Resolution, ApJ, 427, 718 https://doi.org/10.1086/174180
  17. Laing, R. A., Bridle, A. H., Parma, P., et al. 2008, Multifrequency VLA Observations of the FR I Radio Galaxy 3C 31: Morphology, Spectrum and Magnetic Field, MNRAS, 386, 657 https://doi.org/10.1111/j.1365-2966.2008.13091.x
  18. Lee, S.-S., Lobanov, A. P., Krichbaum, T. P., et al. 2008, A Global 86 GHz VLBI Survey of Compact Radio Sources, AJ, 136, 159 https://doi.org/10.1088/0004-6256/136/1/159
  19. Lee, S.-S., Petrov, L., Byun, D.-Y., et al. 2014a, Early Science with the Korean VLBI Network: Evaluation of System Performance, AJ, 147, 77 https://doi.org/10.1088/0004-6256/147/4/77
  20. Lister, M. L., Aller, M. F., Aller, H. D., et al. 2013, MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. X. Parsec-Scale Jet Orientation Variations and Superluminal Motion in AGN, AJ, 146, 120 https://doi.org/10.1088/0004-6256/146/5/120
  21. Lee, S.-S. 2014, Intrinsic Brightness Temperatures of Compact Radio Jets as a Function of Frequency, JKAS, 47, 303
  22. Lee, S.-S., Oh, C. S., Roh, D.-G., et al. 2015, A New Hardware Correlator in Korea: Performance Evaluation Using KVN Observations, JKAS, 48, 125
  23. Lister, M. L., & Homan, D. C. 2005, MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. I. First-Epoch 15 GHz Linear Polarization Images, AJ, 130, 1389 https://doi.org/10.1086/432969
  24. Lobanov, A. P. 2005, Resolution Limits in Astronomical Images, arXiv:astro-ph/0503225
  25. Marrone, D. P., Moran, J. M., Zhao, J. -H., et al. 2006, Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A*, ApJ, 640, 308 https://doi.org/10.1086/500106
  26. Molina, S. N., Agudo, I., Gómez. J. L., et al. 2014, Evidence of Internal Rotation and a Helical Magnetic Field in the Jet of the Quasar NRAO 150, A&A, 566, 26 https://doi.org/10.1051/0004-6361/201423479
  27. Hovatta, T., Aller, M. F., Hughes, H. D., et al. 2014, MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. XI. Spectral Distributions, AJ, 147, 143 https://doi.org/10.1088/0004-6256/147/6/143
  28. Hughes, P. A., Aller, M. F., Aller, H. D. 1985, Polarized Radio Outbursts in BL-Lacertae – Part Two – the Flux and Polarization of a Piston-Driven Shock, ApJ, 298, 301 https://doi.org/10.1086/163611
  29. Hughes, P. A. (ed.) 1991, Beams and Jets in Astrophysics (Cambridge: Cambridge University Press)
  30. Jorstad, S. G., Marscher, A. P., Lister, M. L., et al. 2005, Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array, AJ, 130, 1418 https://doi.org/10.1086/444593
  31. Jorstad, S. G., Marscher, A. P., Stevens, J. A., et al. 2007, Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior, AJ, 134, 799 https://doi.org/10.1086/519996
  32. Kadler, M., Ros, E., Lobanov, A. P., et al. 2004, The Twin-Jet System in NGC 1052: VLBI-Scrutiny of the Obscuring Torus, A&A, 426, 481 https://doi.org/10.1051/0004-6361:20041051
  33. Kameno, S., Sawada-Satoh, S., Inoue, M., et al. 2001, The Dense Plasma Torus around the Nucleus of an Active Galaxy NGC1052, PASJ, 53, 169 https://doi.org/10.1093/pasj/53.2.169
  34. Kim, J.-Y., & Trippe, S. 2014, VIMAP: an Interactive Program Providing Radio Spectral Index Maps of Active Galactic Nuclei, JKAS, 47, 195
  35. Kuo, C. Y., Asada, K., Rao, R., et al. 2014, Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array, ApJ, 783, 33 https://doi.org/10.1088/0004-637X/783/1/33
  36. Laing, R. A. 1980, A Model for the Magnetic Field Structure in Extended Radio Sources, MNRAS, 193, 439 https://doi.org/10.1093/mnras/193.3.439
  37. Aaron, S. E. 1997, Calibration of VLBI Polarization Data, EVN Memo #78
  38. Asada, K., Inoue, M., Uchida, Y., et al. 2002, A Helical Magnetic Field in the Jet of 3C 273, PASJ, 54, 39 https://doi.org/10.1093/pasj/54.1.39
  39. Boettcher, M., Harris, D. E., & Krawczynski, H. 2012, Relativistic Jets from Active Galactic Nuclei (Weinheim: Wiley-VCH)
  40. Cohen, M. H., Meier, D. L., Arshakian, T. G., et al. 2015, Studies of the Jet in BL Lacertae. II. Superluminal Alfvén Waves, ApJ, 803, 3 https://doi.org/10.1088/0004-637X/803/1/3
  41. Fomalont, E. B. 1999, in Astron. Soc. Pac. Conf. Ser., 180, Synthesis Imaging in Radio Astronomy II, ed. G. B. Taylor, C. L. Carilli, & R. A. Perley, 301
  42. Fromm, C. M., Ros, E., Perucho, M., et al. 2013, Catching the Radio Flare in CTA 102. III. Core-Shift and Spectral Analysis, A&A, 557, 105 https://doi.org/10.1051/0004-6361/201321784
  43. Garrington, S. T., Leahy, J. P., Conway, R. G., & Laing, R. A. 1988, A Systematic Asymmetry in the Polarization Properties of Double Radio Sources with One Jet, Nature, 331, 147 https://doi.org/10.1038/331147a0
  44. Gomez, J. L., Marscher, A. P., Jorstad, S. G., et al. 2008, Faraday Rotation and Polarization Gradients in the Jet of 3C 120: Interaction with the External Medium and a Helical Magnetic Field?, ApJ, 681, 69 https://doi.org/10.1086/590388