TiN Anode for Electrolytic Reduction of UO2 in Pyroprocessing

TiN 양극을 이용한 파이로프로세싱 UO2 전해환원

  • Received : 2015.05.04
  • Accepted : 2015.07.13
  • Published : 2015.09.30


Developing novel anode materials to replace the Pt anode currently used in electrolytic reduction is an important issue on pyroprocessing. In this study, the electrochemical behavior of TiN was investigated as the conductive ceramic anode which evolves O2 gas during the reaction. The feasibility and stability of the TiN anode was examined during the electrolytic reduction of UO2. The TiN anode could electrochemically convert UO2 to metallic U in a LiCl–Li2O molten salt electrolyte. No oxidation of TiN was observed during the reaction; however, the formation of voids in the bulk section appeared to limit the lifetime of the TiN anode.


Pyroprocessing;Electrolytic reduction;UO2;Anode;TiN


  1. J. M. Hur, J. S. Cha, and E. Y. Choi, “Can Carbon Be an Anode for Electrochemical Reduction in a LiCl-Li2O Molten Salt?”, ECS Electrochem. Lett., 3(10), E5-E7 (2014).
  2. S. W. Kim, W. Park, H. S. Im, J. M. Hur, S. S. Hong, S. C. Oh, and E. Y. Choi, “Electrochemical Behavior of Liquid Sb Anode System for Electrolytic Reduction of UO2”, J. Radioanal. Nucl. Chem., 303(1), 1041-1046 (2015).
  3. W. Park, J. K. Kim, J. M. Hur, E. Y. Choi, H. S. Im, and S. S. Hong, “Application of a Boron Doped Diamond (BDD) Electrode as an Anode for the Electrolytic Reduction of UO2 in Li2O-LiCl-KCl Molten Salt”, J. Nucl. Mater., 432(1-3), 175-181 (2013).
  4. J. Westlinder, T. Schram, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken, “On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices”, IEEE Electron Device Lett. 24(9), 550-552 (2003).
  5. M. Wittmer and H. Melchior, "Applications of TiN Thin Films in Silicon Device Technology", 93(3-4), 397-405 (1982).
  6. H. G. Tompkins, “Oxidation of Titanium Nitride in Room Air and in Dry O2”, J. Appl. Phys., 70(7), 3876-3880 (1991).
  7. M. Wittmer, J. Noser, and H. Melchior, “Oxidation Kinetics of TiN Thin Films”, J. Appl. Phys. 52(11), 6659-6664 (1981).
  8. H. Lee, G. I. Park, K. H. Kang, J. M. Hur, J. G. Kim, D. H. Ahn, Y. Z. Cho, and E. H. Kim, “Pyroprocessing Technology Development at KAERI”, Nucl. Eng. Techol. 43(4), 317-328 (2011).
  9. H. Ohta, T. Inoue, Y. Sakamura, and K. Kinoshita, “Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology”, Nucl. Technol., 150(2), 153-161 (2005).
  10. T. Inoue and L. Koch, “Development of Pyroprocessing and Its Future Direction”, Nucl. Eng. Technol., 40(3), 183-190 (2008).
  11. J. M. Hur, S. M. Jeong, and H. Lee, “Underpotential Deposition of Li in a Molten LiCl-Li2O Electrolyte for the Electrochemical Reduction of U from Uranium Oxides”, Electrochem. Commun., 12(5), 706-709 (2010).
  12. S. M. Jeong, H. S. Shin, S. H. Cho, J. M. Hur, and H. S. Lee, “Electrochemical Behavior of a Platinum Anode for Reduction of Uranium Oxide in a LiCl Molten Salt”, Electrochim. Acta, 54(26), 6335-6340 (2009).
  13. S. M. Jeong, H. S. Shin, S. S. Hong, J. M. Hur, J. B. Do, and H. S. Lee, “Electrochemical Reduction Behavior of U3O8 Powder in a LiCl Molten Salt”, Electrochim. Acta, 55(5), 1749-1755 (2010).
  14. E. Y. Choi, I. K. Choi, J. M. Hur, D. S. Kang, H. S. Shin, and S. M. Jeong, “In Situ Electrochemical Measurement of O2− Concentration in Molten Li2O/LiCl during Uranium Oxide Reduction Process”, Electrochem. Solid-State Lett., 15(3), E11-E13 (2012).

Cited by

  1. Chemical Stability of Conductive Ceramic Anodes in LiCl–Li 2 O Molten Salt for Electrolytic Reduction in Pyroprocessing vol.48, pp.4, 2016,
  2. A preliminary study of pilot-scale electrolytic reduction of UO 2 using a graphite anode 2017,
  3. Review—Metallic Lithium and the Reduction of Actinide Oxides vol.164, pp.8, 2017,
  4. Electrochemical properties of noble metal anodes for electrolytic reduction of uranium oxide vol.311, pp.1, 2017,