DOI QR코드

DOI QR Code

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

Ramirez, Fernando Arturo;Arjona, Marco A.

  • 투고 : 2015.01.12
  • 심사 : 2015.04.19
  • 발행 : 2015.09.20

초록

This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.

키워드

Capacitor Voltage Balancing;Multilevel Inverter;Single-phase inverter;Space Vector Modulation

참고문헌

  1. S. Bhowmik, A. van Zyl, R. Spee, and J. H. R. Enslin, “Sensorless current control for active rectifiers,” IEEE Trans. Ind. Appl., Vol. 33, No. 3, pp. 765,773, May/Jun. 1997 https://doi.org/10.1109/28.585867
  2. K. Sano and H Fujita, “Voltage-balancing circuit based on a resonant switched-capacitor converter for multilevel inverters,” IEEE Trans. Ind. Appl., Vol. 44, No. 6, pp. 1768-1776, Nov. 2008. https://doi.org/10.1109/TIA.2008.2006291
  3. K. S. Gayathri Devi, S. Arun, and C. Sreeja, “Comparative study on different five level inverter topologies,” Electrical Power and Energy systems, Vol. 63, pp. 363-372, 2014. https://doi.org/10.1016/j.ijepes.2014.05.053
  4. Microchip, "Real Time Data Monitor User's guide", http://ww1.microchip.com/downloads/en/DeviceDoc/70567A.pdf, 2008.
  5. L. Gao and J. E. Fletcher, “A space vector switching strategy for three-level five-phase inverter drives,” IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2332-2343, Jul. 2010. https://doi.org/10.1109/TIE.2009.2033087
  6. A. Lewicki, Z. Krzeminski, and H. Abu-Rub, “Space-vector pulsewidth modulation for three-level NPC converter with the neutral point voltage control,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5076-5086, Nov. 2011. https://doi.org/10.1109/TIE.2011.2119453
  7. J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC-AC converter topologies,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 4988-5006, Nov. 2011. https://doi.org/10.1109/TIE.2011.2159353
  8. Q. Zhang, X. D. Sun, Y. R. Zhong, M. Matsui, and B. Y. Ren, “Analysis and design of a digital phase-locked loop for single-phase grid-connected power conversion systems,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3581-3592, Aug. 2011 https://doi.org/10.1109/TIE.2010.2087295
  9. E. Robles, S. Ceballos, J. Pou, J. L. Martín, J. Zaragoza, and P. Ibañez, “Variable-frequency grid-sequence detector based on a quasi-ideal low-pass filter stage and a phase-locked loop,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2552-2563, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2050492
  10. L. Zhang, L. Harnefors, and H. P. Nee, “Power-synchronization control of grid-connected voltage-source converters,” IEEE Trans. Power Syst., Vol. 25, No. 2, pp. 809-820, May 2010. https://doi.org/10.1109/TPWRS.2009.2032231
  11. B. Bahrani, A. Rufer, S. Kenzelmann, and L.A.C. Lopes, “Vector control of single-phase voltage-source converter based on fictive-axis emulation,” IEEE Trans. Ind. Appl., Vol. 47, No. 2, pp. 831-840, Apr. 2011. https://doi.org/10.1109/TIA.2010.2101992
  12. M. Manilowski, "Sensorless control strategies for three-phase PWM rectifiers," PhD. Thesis, Warsaw University of Technology, 2001.
  13. Y. Hinago and H. Koizumi, “A single-phase multilevel inverter using switched series/parallel DC voltage sources,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2643-2650, Aug. 2010. https://doi.org/10.1109/TIE.2009.2030204
  14. J. Pereda and J. Dixon, “High-frequency link: A solution for using only one DC source in asymmetric cascaded multilevel inverters,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 3884-3892, Sep. 2011. https://doi.org/10.1109/TIE.2010.2103532
  15. K. K. Gupta and S. Jain, “A novel multilevel inverter based on switched DC sources,” IEEE Trans. Ind. Electron., Vol. 61, No. 7, pp. 3269-3278, Jul. 2014. https://doi.org/10.1109/TIE.2013.2282606
  16. Y. Hinago and H. Koizumi, “A single-phase multilevel inverter using switched series/parallel DC voltage sources,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 2643-2650, Aug. 2010. https://doi.org/10.1109/TIE.2009.2030204
  17. F. Z. Peng, “A generalized multilevel inverter topology with self voltage balancing,” IEEE Trans. Ind. Appl., Vol. 37, No. 2, pp. 611-618, Mar. 2001. https://doi.org/10.1109/28.913728
  18. A. Jouanne, S. Dai, and H. Zhang, “A multilevel inverter approach providing DC-link balancing, ride-through enhancement, and common-mode voltage elimination,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 611-618, Aug. 2002.
  19. Z. Pan and F. Z. Peng, “A sinusoidal PWM method with voltage balancing capability for diode-clamped five-level converters,” IEEE Trans. Ind. Appl., Vol. 45, No. 3, pp. 1028-1034, May/Jun. 2009. https://doi.org/10.1109/TIA.2009.2018962
  20. J. Rodriguez, L.G. Franquelo, and S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats, and M. A. Perez, “Multilevel converters: An Enabling Technology for high-power applications,” in Proc. The IEEE, Vol. 97, No. 11, pp. 1786-1817, Nov. 2009.
  21. W. Fei, X. Du, and B. Wu, “A generalized half-wave symmetry SHE-PWM formulation for multilevel voltage inverters,” IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3030-3038, Sep. 2010. https://doi.org/10.1109/TIE.2009.2037647
  22. R. Nagarajan and M. Saravanan, “Performance analysis of a novel reduced switch cascaded multilevel inverter,” Journal of Power Electronics, Vol. 14, No. 1, pp.48-60, Jan. 2014. https://doi.org/10.6113/JPE.2014.14.1.48
  23. E. Beser, B. Arifoglu, and E. K. Beser, “Design and application of a single phase multilevel inverter suitable for using as a voltage harmonic source,” Journal of Power Electronics, Vol. 10, No. 2, pp.138-145, Mar. 2010. https://doi.org/10.6113/JPE.2010.10.2.138
  24. E. Babaei, A. Dehqan, and M. Sabahi, “Improvement of the performance of the cascaded multilevel inverters using power cells with two series legs,” Journal of Power Electronics, Vol. 13, No. 2, pp. 223-231, Mar. 2013. https://doi.org/10.6113/JPE.2013.13.2.223
  25. N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-phase seven-level grid-connected inverter for photovoltaic system,” IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2435–2443, Jun. 2011. https://doi.org/10.1109/TIE.2010.2064278
  26. N. A. Rahim and J. Selvaraj, “Multi-string five-level inverter with novel PWM control scheme for PV application,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2111-2121, Jun. 2010. https://doi.org/10.1109/TIE.2009.2034683
  27. F. Khoucha, S. M. Lagoun, K. Marouani, A. Kheloui, and M. El Hachemi Benbouzid, “Hybrid cascaded H-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications,” IEEE Trans. Ind. Electron., Vol. 57, No. 3, pp. 892-899, Mar. 2010. https://doi.org/10.1109/TIE.2009.2037105

피인용 문헌

  1. A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters vol.16, pp.6, 2016, https://doi.org/10.6113/JPE.2015.15.5.1235