DOI QR코드

DOI QR Code

An experimental approach to study the function of mitochondria in cardiomyopathy

Chung, Youn Wook;Kang, Seok-Min

  • 투고 : 2015.07.20
  • 발행 : 2015.10.31

초록

Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy.

키워드

Cardiomyopathy;Heart;Mitochondria

참고문헌

  1. Wagner JA, Weisman HF, Snowman AM, Reynolds IJ, Weisfeldt ML and Snyder SH (1989) Alterations in calcium antagonist receptors and sodium-calcium exchange in cardiomyopathic hamster tissues. Circ Res 65, 205-214 https://doi.org/10.1161/01.RES.65.1.205
  2. Li Y, Huang TT, Carlson EJ et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11, 376-381 https://doi.org/10.1038/ng1295-376
  3. Shipp JC, Opie LH and Challoner D (1961) Fatty acid and glucose metabolism in the perfused heart. Nature 189, 1018-1019 https://doi.org/10.1038/1891018a0
  4. Bersin RM, Wolfe C, Kwasman M et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23, 1617-1624 https://doi.org/10.1016/0735-1097(94)90665-3
  5. Lewis JF, DaCosta M, Wargowich T and Stacpoole P (1998) Effects of dichloroacetate in patients with congestive heart failure. Clin Cardiol 21, 888-892 https://doi.org/10.1002/clc.4960211206
  6. Arakawa K, Kudo T, Ikawa M et al (2010) Abnormal myocardial energy-production state in mitochondrial cardiomyopathy and acute response to L-arginine infusion. C-11 acetate kinetics revealed by positron emission tomography. Circ J 74, 2702-2711 https://doi.org/10.1253/circj.CJ-10-0044
  7. Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B and Walker UA (2007) Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 151, 771-778 https://doi.org/10.1038/sj.bjp.0707294
  8. Konorev EA, Kennedy MC and Kalyanaraman B (1999) Cell-permeable superoxide dismutase and glutathione peroxidase mimetics afford superior protection against doxorubicin-induced cardiotoxicity: the role of reactive oxygen and nitrogen intermediates. Arch Biochem Biophys 368, 421-428 https://doi.org/10.1006/abbi.1999.1337
  9. Fisher PW, Salloum F, Das A, Hyder H and Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111, 1601-1610 https://doi.org/10.1161/01.CIR.0000160359.49478.C2
  10. Abozguia K, Elliott P, McKenna W et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562-1569 https://doi.org/10.1161/CIRCULATIONAHA.109.934059
  11. Lionetti V, Linke A, Chandler MP et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66, 454-461 https://doi.org/10.1016/j.cardiores.2005.02.004
  12. van der Vijgh WJ, van Velzen D, van der Poort JS et al (1988) Morphometric study of myocardial changes during doxorubicin-induced cardiomyopathy in mice. Eur J Cancer Clin Oncol 24, 1603-1608 https://doi.org/10.1016/0277-5379(88)90052-1
  13. Shenasa H, Calderone A, Vermeulen M et al (1990) Chronic doxorubicin induced cardiomyopathy in rabbits: mechanical, intracellular action potential, and beta adrenergic characteristics of the failing myocardium. Cardiovasc Res 24, 591-604 https://doi.org/10.1093/cvr/24.7.591
  14. Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J and Walker UA (2003) Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation 108, 2423-2429 https://doi.org/10.1161/01.CIR.0000093196.59829.DF
  15. Kerr DS (2010) Treatment of mitochondrial electron transport chain disorders: a review of clinical trials over the past decade. Mol Genet Metab 99, 246-255 https://doi.org/10.1016/j.ymgme.2009.11.005
  16. Gurlek A, Tutar E, Akcil E et al (2000) The effects of L-carnitine treatment on left ventricular function and erythrocyte superoxide dismutase activity in patients with ischemic cardiomyopathy. Eur J Heart Fail 2, 189-193 https://doi.org/10.1016/S1388-9842(00)00064-7
  17. Singh RB, Niaz MA, Rastogi V and Rastogi SS (1998) Coenzyme Q in cardiovascular disease. J Assoc Physicians India 46, 299-306
  18. Buyse GM, Van der Mieren G, Erb M et al (2009) Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. Eur Heart J 30, 116-124 https://doi.org/10.1093/eurheartj/ehn406
  19. Lagedrost SJ, Sutton MS, Cohen MS et al (2011) Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J 161, 639-645 e631 https://doi.org/10.1016/j.ahj.2010.10.038
  20. Rizos I (2000) Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am Heart J 139, S120-123 https://doi.org/10.1067/mhj.2000.103917
  21. Hajjar RJ, Liao R, Young JB, Fuleihan F, Glass MG and Gwathmey JK (1993) Pathophysiological and biochemical characterisation of an avian model of dilated cardiomyopathy: comparison to findings in human dilated cardiomyopathy. Cardiovasc Res 27, 2212-2221 https://doi.org/10.1093/cvr/27.12.2212
  22. Zhang M, Wei J, Shan H et al (2013) Calreticulin-STAT3 signaling pathway modulates mitochondrial function in a rat model of furazolidone-induced dilated cardiomyopathy. PLoS One 8, e66779 https://doi.org/10.1371/journal.pone.0066779
  23. Armstrong PW, Stopps TP, Ford SE and de Bold AJ (1986) Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 74, 1075-1084 https://doi.org/10.1161/01.CIR.74.5.1075
  24. Spinale FG, Hendrick DA, Crawford FA, Smith AC, Hamada Y and Carabello BA (1990) Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol 259, H218-229
  25. Ide T, Tsutsui H, Kinugawa S et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85, 357-363 https://doi.org/10.1161/01.RES.85.4.357
  26. Melov S, Coskun P, Patel M et al (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci U S A 96, 846-851 https://doi.org/10.1073/pnas.96.3.846
  27. Lefrak EA, Pitha J, Rosenheim S and Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32, 302-314 https://doi.org/10.1002/1097-0142(197308)32:2<302::AID-CNCR2820320205>3.0.CO;2-2
  28. Gilladoga AC, Manuel C, Tan CT, Wollner N, Sternberg SS and Murphy ML (1976) The cardiotoxicity of adriamycin and daunomycin in children. Cancer 37, 1070-1078 https://doi.org/10.1002/1097-0142(197602)37:2+<1070::AID-CNCR2820370814>3.0.CO;2-6
  29. Takemura G and Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49, 330-352 https://doi.org/10.1016/j.pcad.2006.10.002
  30. Sawyer DB (2013) Anthracyclines and heart failure. N Engl J Med 368, 1154-1156 https://doi.org/10.1056/NEJMcibr1214975
  31. Vicart P, Caron A, Guicheney P et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20, 92-95 https://doi.org/10.1038/1765
  32. Wang X, Osinska H, Dorn GW 2nd et al (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103, 2402-2407 https://doi.org/10.1161/01.CIR.103.19.2402
  33. Maloyan A, Sanbe A, Osinska H et al (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112, 3451-3461 https://doi.org/10.1161/CIRCULATIONAHA.105.572552
  34. Badorff C, Lee GH, Lamphear BJ et al (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5, 320-326 https://doi.org/10.1038/6543
  35. Feng J, Yan J, Buzin CH, Towbin JA and Sommer SS (2002) Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab 77, 119-126 https://doi.org/10.1016/S1096-7192(02)00153-1
  36. Vatta M, Stetson SJ, Perez-Verdia A et al (2002) Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359, 936-941 https://doi.org/10.1016/S0140-6736(02)08026-1
  37. Khairallah M, Khairallah R, Young ME, Dyck JR, Petrof BJ and Des Rosiers C (2007) Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43, 119-129 https://doi.org/10.1016/j.yjmcc.2007.05.015
  38. Nakayama H, Chen X, Baines CP et al (2007) Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117, 2431-2444 https://doi.org/10.1172/JCI31060
  39. Engel AG (1999) Myofibrillar myopathy. Ann Neurol 46, 681-683 https://doi.org/10.1002/1531-8249(199911)46:5<681::AID-ANA1>3.0.CO;2-B
  40. Paulin D, Huet A, Khanamyrian L and Xue Z (2004) Desminopathies in muscle disease. J Pathol 204, 418-427 https://doi.org/10.1002/path.1639
  41. Gray MW, Burger G and Lang BF (1999) Mitochondrial evolution. Science 283, 1476-1481 https://doi.org/10.1126/science.283.5407.1476
  42. Fosslien E (2003) Review: Mitochondrial medicine--cardiomyopathy caused by defective oxidative phosphorylation. Ann Clin Lab Sci 33, 371-395
  43. Wang J, Wilhelmsson H, Graff C et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21, 133-137 https://doi.org/10.1038/5089
  44. Li H, Wang J, Wilhelmsson H et al (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci U S A 97, 3467-3472 https://doi.org/10.1073/pnas.97.7.3467
  45. Wisneski JA, Gertz EW, Neese RA and Mayr M (1987) Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest 79, 359-366 https://doi.org/10.1172/JCI112820
  46. Stanley WC and Chandler MP (2002) Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 7, 115-130 https://doi.org/10.1023/A:1015320423577
  47. Stanley WC, Lopaschuk GD, Hall JL and McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33, 243-257 https://doi.org/10.1016/S0008-6363(96)00245-3
  48. Shirihai OS, Song M and Dorn GW 2nd (2015) How Mitochondrial Dynamism Orchestrates Mitophagy. Circ Res 116, 1835-1849 https://doi.org/10.1161/CIRCRESAHA.116.306374
  49. Ashrafian H, Docherty L, Leo V et al (2010) A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet 6, e1001000 https://doi.org/10.1371/journal.pgen.1001000
  50. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR and Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16, 226-234 https://doi.org/10.1038/ng0797-226
  51. Archer SL (2013) Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369, 2236-2251 https://doi.org/10.1056/NEJMra1215233
  52. Song M, Mihara K, Chen Y, Scorrano L and Dorn GW 2nd (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21, 273-285 https://doi.org/10.1016/j.cmet.2014.12.011
  53. Chen Y and Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471-475 https://doi.org/10.1126/science.1231031
  54. Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS and Dorn GW 2nd (2014) Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 115, 348-353 https://doi.org/10.1161/CIRCRESAHA.115.304384
  55. Chen Y, Liu Y and Dorn GW 2nd (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109, 1327-1331 https://doi.org/10.1161/CIRCRESAHA.111.258723
  56. Papanicolaou KN, Kikuchi R, Ngoh GA et al (2012) Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res 111, 1012-1026 https://doi.org/10.1161/CIRCRESAHA.112.274142
  57. Chen L, Liu T, Tran A et al (2012) OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J Am Heart Assoc 1, e003012 https://doi.org/10.1161/JAHA.112.003012
  58. Song M and Dorn GW 2nd (2015) Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab 21, 195-205 https://doi.org/10.1016/j.cmet.2014.12.019
  59. Kubli DA and Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111, 1208-1221 https://doi.org/10.1161/CIRCRESAHA.112.265819
  60. Delbridge LM, Mellor KM, Taylor DJ and Gottlieb RA (2015) Myocardial autophagic energy stress responses--macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 308, H1194-1204 https://doi.org/10.1152/ajpheart.00002.2015
  61. Hoppel CL, Tandler B, Parland W, Turkaly JS and Albers LD (1982) Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem 257, 1540-1548
  62. D'Angelo DD, Sakata Y, Lorenz JN et al (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94, 8121-8126 https://doi.org/10.1073/pnas.94.15.8121
  63. Sakata Y, Hoit BD, Liggett SB, Walsh RA and Dorn GW 2nd (1998) Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation 97, 1488-1495 https://doi.org/10.1161/01.CIR.97.15.1488
  64. Yussman MG, Toyokawa T, Odley A et al (2002) Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8, 725-730 https://doi.org/10.1038/nm719
  65. Syed F, Odley A, Hahn HS et al (2004) Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 95, 1200-1206 https://doi.org/10.1161/01.RES.0000150366.08972.7f
  66. Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN and Dorn GW 2nd (2008) Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117, 396-404 https://doi.org/10.1161/CIRCULATIONAHA.107.727073
  67. Dorn GW 2nd (2010) Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res 3, 374-383 https://doi.org/10.1007/s12265-010-9174-x
  68. Shin G, Sugiyama M, Shoji T, Kagiyama A, Sato H and Ogura R (1989) Detection of mitochondrial membrane damages in myocardial ischemia with ESR spin labeling technique. J Mol Cell Cardiol 21, 1029-1036 https://doi.org/10.1016/0022-2828(89)90801-8
  69. Palmer JW, Tandler B and Hoppel CL (1985) Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch Biochem Biophys 236, 691-702 https://doi.org/10.1016/0003-9861(85)90675-7
  70. Lauritzen KH, Kleppa L, Aronsen JM et al (2015) Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol 309, H434-449 https://doi.org/10.1152/ajpheart.00253.2014
  71. Sligh JE, Levy SE, Waymire KG et al (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97, 14461-14466 https://doi.org/10.1073/pnas.250491597
  72. Baba A, Yoshikawa T, Fukuda Y et al (2004) Autoantibodies against M2-muscarinic acetylcholine receptors: new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J 25, 1108-1115 https://doi.org/10.1016/j.ehj.2004.05.012
  73. Fu LX, Magnusson Y, Bergh CH et al (1993) Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest 91, 1964-1968 https://doi.org/10.1172/JCI116416
  74. Fu ML, Schulze W, Wallukat G, Hjalmarson A and Hoebeke J (1995) Functional epitope analysis of the second extracellular loop of the human heart muscarinic acetylcholine receptor. J Mol Cell Cardiol 27, 427-436 https://doi.org/10.1016/S0022-2828(08)80039-9
  75. Zhang S, He Z, Wang J et al (2015) Mitochondrial Ultrastructural Alterations and Declined M2 Receptor Density Were Involved in Cardiac Dysfunction in Rats after Long Term Treatment with Autoantibodies against M2 Muscarinic Receptor. PLoS One 10, e0129563 https://doi.org/10.1371/journal.pone.0129563
  76. Yoshizawa A, Nagai S, Baba Y et al (2012) Autoimmunity against M(2)muscarinic acetylcholine receptor induces myocarditis and leads to a dilated cardiomyopathy-like phenotype. Eur J Immunol 42, 1152-1163 https://doi.org/10.1002/eji.201142104
  77. Palmer JW, Tandler B and Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252, 8731-8739
  78. Cecchi F, Tomberli B and Olivotto I (2012) Clinical and molecular classification of cardiomyopathies. Glob Cardiol Sci Pract 2012, 4 https://doi.org/10.5339/gcsp.2012.4
  79. Ozawa T (1994) Mitochondrial cardiomyopathy. Herz 19, 105-118, 125
  80. Stanley WC and Hoppel CL (2000) Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovasc Res 45, 805-806 https://doi.org/10.1016/S0008-6363(99)00419-8
  81. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J and Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol 33, 1065-1089 https://doi.org/10.1006/jmcc.2001.1378
  82. Ikeda Y and Ross J Jr. (2000) Models of dilated cardiomyopathy in the mouse and the hamster. Curr Opin Cardiol 15, 197-201 https://doi.org/10.1097/00001573-200005000-00013
  83. Benjamin IJ and Schneider MD (2005) Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest 115, 495-499 https://doi.org/10.1172/JCI200524477
  84. Recchia FA and Lionetti V (2007) Animal models of dilated cardiomyopathy for translational research. Vet Res Commun 31 Suppl 1, 35-41 https://doi.org/10.1007/s11259-007-0005-8
  85. Wallace DC and Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12-31 https://doi.org/10.1016/j.mito.2009.09.006
  86. Winnik S, Auwerx J, Sinclair DA and Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J [Epub ahead of print]
  87. Ryu D, Jo YS, Lo Sasso G et al (2014) A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab 20, 856-869 https://doi.org/10.1016/j.cmet.2014.08.001
  88. Roh JI, Cheong C, Sung YH et al (2014) Perturbation of NCOA6 leads to dilated cardiomyopathy. Cell Rep 8, 991-998 https://doi.org/10.1016/j.celrep.2014.07.027
  89. Walters AM, Porter GA Jr. and Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111, 1222-1236 https://doi.org/10.1161/CIRCRESAHA.112.265660
  90. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 125, e2-e220 https://doi.org/10.1161/CIR.0b013e31823ac046
  91. Ambrosio G, Zweier JL, Duilio C et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268, 18532-18541
  92. Lucas DT and Szweda LI (1998) Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci U S A 95, 510-514 https://doi.org/10.1073/pnas.95.2.510
  93. Murphy E and Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88, 581-609 https://doi.org/10.1152/physrev.00024.2007
  94. Brenner C and Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111, 1237-1247 https://doi.org/10.1161/CIRCRESAHA.112.265942
  95. Kwong JQ and Molkentin JD (2015) Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 21, 206-214 https://doi.org/10.1016/j.cmet.2014.12.001
  96. Huss JM and Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115, 547-555 https://doi.org/10.1172/JCI24405
  97. Towbin JA and Bowles NE (2002) The failing heart. Nature 415, 227-233 https://doi.org/10.1038/415227a

피인용 문헌

  1. Mitochondria as pharmacological targets in Down syndrome 2017, https://doi.org/10.5483/BMBRep.2015.48.10.153