DOI QR코드

DOI QR Code

Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성

이명은;이현돈;서현효
Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo

  • 투고 : 2015.07.28
  • 심사 : 2015.09.05
  • 발행 : 2015.09.30

초록

미생물유래 다당류 생산균주를 분리하기 위해 전국 각지의 토양시료로부터 가장 높은 점성과 다당류 생산성을 나타내는 균주 GP32를 분리하였으며, 분리균주 GP32의 동정을 분리균주의 형태학적, 생리학적 특성을 조사한 결과, Pseudomonas 속 세균으로 확인되었으며 최종적으로 Pseudomonas sp. GP32로 명명하였다. 플라스크 수준에서 Pseudomonas sp. GP32의 다당류 생산을 위한 가장 적합한 탄소원과 질소원은galactose와 (NH4)2SO4를 이용하였을 때 가장 많은 다당류를 생산하는 것으로 확인되었으며, 다당류 생산을 위한 최적의 C/N ratio는 50이었다. 다당류 생산을 위한 최적 pH와 온도는 각각 7.5와 32℃였다. 최적화된 배지를 이용한 fermentor 배양에서 다당류 생산은 배양 70시간에 최고치를 나타내었으며, 이때 다당류 생산량은 15.7 g/l이었다. Pseudomonas sp. GP32로부터 생산된 다당류는 ethanol 침전, cetylpyridimium 침전과 gel permeation chromatography를 통하여 정제하였으며, 정제된 다당류는 Biopol32로 명명하였다. Biopol 32의 분자량은 3×107 datons이었으며, Biopol32가 함유하고 있는 구성당은 galactose : glucose : gulcouronic acid : galactouronic acid 등이 1.85 : 3.24 : 1.00 : 1.42의 몰비로 함유되어있다. Biopol32 용액은 의가소성 성질을 갖는 고분자 화합물로서 Zoogloea ramigera가 생산하는 생물고분자인 zooglan보다 모든 농도에서 높은 점성을 나타내었다. Biopol32의 실제 폐수처리현장에서 응집제로의 사용 가능성을 검토하기 위하여 식품폐수, 섬유폐수와 제지폐수를 대상으로 응집효율을 조사한 결과, 높은 COD 감소율 (58.4~67.3%)과 SS제거율(82.6~91.3%)를 나타내어 실제 산업폐수에서 뛰어난 응집효율을 나타내었다.

키워드

Apparent viscosity;bacterial polysaccharide;flocculating efficiency;polysaccharide production

참고문헌

  1. Unz, R. F. and Farrah, S. R. 1976. Exopolymer production and flocculation by Zoogloea MP6. Appl. Environ. Microbiol. 31, 623-626.
  2. Williams, A. G. and Wimpenny, J. T. T. 1977. Exopolysaccharide production by Pseudomonas NCIB 11264 grown on batch culture. J. Gen. Microbiol. 102, 13-21. https://doi.org/10.1099/00221287-102-1-13
  3. Nohata, Y. and Kurane, B. 1993. Culture conditions for production and purification of bioabsorbent from Acaligenes latus B-16. J. Ferment. Bioeng. 77, 390-393.
  4. Peter, H. A. S., Nicholas, S. M., Sharpe, M. E. and Holt, J. F. 1986. Bergey’s manual of systematic bacteriology, Williams and Wikins Co., Baltimore, Maryland.
  5. Rehm, B. H. A. and Valla, S. 1997. Bacterial alginates : Biosynthesis and application. Appl. MIcrobiol. Biotechnol. 48, 281-288. https://doi.org/10.1007/s002530051051
  6. Seo, W. T., Kahang, G. G., Nam, S. H., Choi, H. H., Kim, S. W. and Park, Y. H. 1999. Isolation and characterization of a novel exopolsaccharide-producing Penibacillus sp. WN9 KCTC 8591P. J. Microbiol. Biotechnol. 9, 820-825.
  7. Souw, P. and Demain, A. L. 1979. Nutritional studies on xanthan production by Xanthomonas compestris NRRL B1459. Appl. Environ. Microbiol. 37, 1186-1192.
  8. Speer, R. A. and Tung, M. A. 1986. Concentration and temperature dependence of low behavior of xanthan gum dispersions. J. Food. Sci. 56, 96-103.
  9. Tait, M. I. Sutherland, I. W. and Clarke-Sturman, A. 1986. Effect of growth condition on the production, composition and viscosity of Xanthomonas compestris exopolysaccharide. J. Gen. Microbiol. 132, 1483-1492.
  10. Tamaoka, K. and Komagata, K. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125-128. https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  11. Takagi, H. and Kadowaki, K. 1985. Purification and chemical properties of a flocculant produced by Paecilomyces. Agric. Biol. Chem. 49, 3159-3164. https://doi.org/10.1271/bbb1961.49.3159
  12. Toeda, K. and Kurane, R. 1991. Microbial flocculant from Alcaligenes cupidus KT201. Agric. Biol. Chem. 55, 2793-2799. https://doi.org/10.1271/bbb1961.55.2793
  13. Kurane, R., Takeda, K. and Suzuki, T. 1986. Screening for and characteristics of microbial flocculants. Agr. BIol. Chem. 50, 2301-2307. https://doi.org/10.1271/bbb1961.50.2301
  14. Kurane, R., Toeda, K., Takeda, K. and Suzuki, T. 1986. Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem. 50, 2309-2313. https://doi.org/10.1271/bbb1961.50.2309
  15. Lawson, C. J. and Shurtland, I. W. 1978. Polysaccharides, pp. 327-397, Rose, A. H. (ed), Economic Microbiology, vol. 2, Academic Press, New York.
  16. MacFaddin, J. F. 1984. Biochemical tests for identification for medical bacteria. 2nd eds,.Williams & Wilkins Co., Baltimore, Maryland.
  17. Margaritis, A. and Pace, G. W. 1985. Micorbial polysaccharides, pp. 1005-1044. In: Murray, M. Y. (ed.), Comprehensive Biotechnology, The principles, applications and regulations of biotechnology in industry, Agriculture and Medicine.
  18. Marshall, K. and Weigel, H. 1980. Evidence of multiple branching in the levan elaborated by Streptococcus salivarius strain 51. Carbohyd. Res. 83, 321-326. https://doi.org/10.1016/S0008-6215(00)84544-9
  19. McNeil, B. and Kristanian, B. 1989. Temperature effect on pulluan formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb. Technol. 12, 521-526.
  20. Moorhouse, R. 1987. In M. Yalpany (ed.), Industrial polysaccharide, Structure property relationships of family of microbial polysaccharides, pp.187-206. Elsevier, Amsterdam.
  21. Dearfield, K. L. and Ambermathy. 1988. Acrylamide its metabolism, development and reproductive effects, genotoxicity, and carcinogenicity. Mutant Res. 195, 45-77.
  22. Kennedy, J. F. and Bradshow. 1984. Progress in industrial microbiology. Bushell, M. E. (ed.) Elsevier. 19, 319-365.
  23. Andrew, J. R., Drozd, J. W., Jones, C. W. and Linton, J. D. 1988. Growth efficiency of Xanthomonas compestris in continuous culture. J. Gen. Microbiology 134, 1055-1061.
  24. Ashtaputre, A. A. and Shah, A. K. 1995. Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1. Appl. Environ. Microbiol. 61, 1159-1162.
  25. Becker, A., Katzen, F., Puhler, A. and Lelpi, L. 1998. Xanthan gum biosynthesis and application : A biochemical/genetic prospective. Appl. Microbiol. Biotechnol. 50, 145-152. https://doi.org/10.1007/s002530051269
  26. Chaplin, M. F. and Kennedy, J. F. 1968. Phenol-sulfuric acid assay. p. In M. F. Chaplin and J. F. Kennedy (eds), Carbohydrate Analysis : A Practical Approach. IRL Press,Washington, DC., U.S.A.
  27. Chen, R. H., Ker, Y. C. and Wu, C. S. 1990. Temperature and shear rate affecting the viscosity and secondary structural changes soy 11S globulin measured by a cone-plate viscometer and fourier transform infrared spectroscopy. Agric. Biol. Chem. 54, 1165-1176. https://doi.org/10.1271/bbb1961.54.1165
  28. Crescenzi, V. 1995. Microbial polysaccharides of applied interest : On going research activities in Europe. Biotechnol. Prog. 11, 251-259. https://doi.org/10.1021/bp00033a002