NMDA투여에 의한 transcription factor (Egr-1, C-Jun, JunB, FosB)의 발현 변화 양상

DOI QR코드

DOI QR Code

하종수;김재화;송재찬
Ha, Jong-Su;Kim, Jae-Wha;Song, Jae-Chan

  • 투고 : 2015.08.18
  • 심사 : 2015.09.10
  • 발행 : 2015.09.30

초록

신경과흥분은 신경세포의 수지돌기 말단부에 있는 흥분성 수용체에 대한 과도한 자극에 의해서 신경세포가 손상을 받는 현상으로 transcription factor의 발현을 유도하여 통증을 유발하는 자극, 학습, 발작, 흥분, 신경변성, 저산소성 국소빈혈, 뇌신경손상, 신경절제, 약제내성 등의 원인이 된다. 신경과흥분은 정상농도 이상의 NMDA에 의해서도 유발되는데 본 논문에서는 mouse의 복강으로 과량의 NMDA를 투여하여 소뇌에서 RT-PCR 방법으로 Inducible transcription factors (Egr-1, c-jun, JunB, FosB) mRNAs의 상대적 발현량을 비교하였다. NMDA를 투여한 군에서 inducible transcription factors (Egr-1, C-Jun, JunB, FosB)가 투여량과 시간의 경과에 따라 다양한 발현의 변화를 보였으며, NMDA투여 후 일정한 시간에서 투여한 양에 대한 변화는 체중 g 당 5 μg의 NMDA투여한 경우에 현저한 변화가 나타났다. 조사한 transcription factor 중에서 JunB의 발현 변화가 다른 transcription factor보다 두드러지게 나타났다. NMDA 투여량이 일정할 때 투여 후 경과 시간에 따른 발현양상은 투여 후 24시간이 경과한 후에 발현의 변화가 두드러지게 증가하는 경향을 나타내었고 대부분 이 48시간 경과 후 발현이 최고치에 도달하였다. 이러한 결과는 과흥분이 유도된 소뇌에서의 유전자 발현의 변화를 2D-gel 또는 microarray와 같은 방법을 이용하여 세포 내의 전체 단백질 혹은 유전자의 변화를 관찰함으로써 NMDA 수용체의 과흥분에 의한 뇌세포의 사멸에 관련된 기전을 밝힐 수 있는 좋은 자료가 될 수 있을 것으로 기대된다.

키워드

Inducible transcription factors;mRNA level;neurodegeneration;NMDA;over-activation

참고문헌

  1. Weller, M. 2014. Primary central nervous system lymphoma in the elderly. Oncol. Res. Treat. 37, 376-377 https://doi.org/10.1159/000365408
  2. Wu, H. Y., Wang, T., Li, L., Correia, K. and Morgan, J. I. 2012. A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice. FASEB J. 26, 4468-4480. https://doi.org/10.1096/fj.12-205047
  3. Wyllie, D. J., Livesey, M. R. and Hardingham, G. E. 2013. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74, 4-17. https://doi.org/10.1016/j.neuropharm.2013.01.016
  4. Yoneda, Y., Ogita, K., Azuma, Y., Ikeda, M., Tagami, H. and Manabe, T. 1999. Predominant expression of nuclear activator protein-1 complex with DNA binding activity following systemic administration of N-methyl-D-aspartate in dentate granule cells of murine hippocampus. Neuroscience 93, 19-31. https://doi.org/10.1016/S0306-4522(99)00117-7
  5. Zheng, S., Yang, H., Chen, Z., Zheng, C., Lei, C. and Lei, B. 2015. Activation of liver X receptor protects inner retinal damage induced by N-methyl-D-aspartate. Invest. Ophthalmol.Vis. Sci. 22, 1168-1180.
  6. Michisuke, Y., Douglas, F., Lynne, M. V., Shaiu, C. S., Curran, T. and Connor, J. A. 1996. Functional NMDA Receptors are transiently active and support the survival of purkinje cells in culture. J. Neurosci. 16, 4651-4661.
  7. Olney, J. W. 1974. Toxic effects of glutamate and relate amino acids on the developing central nerve system, pp. 501-512. In: Nyhan, W. N. (ed.), Heritable Disorders of Amino Acid Metabolism. New Wiley & Sons.
  8. Olney, J. W., Labruyere, J. and Wang, G. 1991. NMDA antagonist neurotoxicity: mechanism and prevention. Science 254, 1515-1518. https://doi.org/10.1126/science.1835799
  9. Pabo, C. O. and Sauer, R. T. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053-1095. https://doi.org/10.1146/annurev.bi.61.070192.005201
  10. Platenik, J., Kuramoto, N. and Yoneda, Y. 2000. Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci. 67, 335-364. https://doi.org/10.1016/S0024-3205(00)00632-9
  11. Strick, P. L. 1985. The cerebellum: the cerebellum and neural control. Science 229, 547-549. https://doi.org/10.1126/science.229.4713.547
  12. Szekely, A. M., Costa, E. and Grayson, D. R. 1990. Transcriptional program coordination by N-methyl-D-aspartate-sensitive glutamate receptor stimulation in primary cultures of cerebellar neurons. Mol. Pharmacol. 38, 624-633.
  13. Tönges, L., Planchamp, V., Koch, J. C., Herdegen, T., Bähr, M. and Lingor, P. 2011. JNK isoforms differentially regulate neurite growth and regeneration in dopaminergic neurons in vitro. J. Mol. Neurosci. 45, 284-293. https://doi.org/10.1007/s12031-011-9519-1
  14. Watanabe, M., Moise, I. M. and Inoue, Y. 1996. Modified N-methyl-D-aspartate receptor subunit expression emerges in reeler Purkinje cells after accomplishment of the adult wild-type expression. Neurosci. Res. 26, 335-343. https://doi.org/10.1016/S0168-0102(96)01115-7
  15. Lerea, L. S., Butler L. S. and Mcnamara, J. O. 1992. NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyrus neurons involves calcium influx via different routes. J. Neurosci. 12, 2973-2981.
  16. Levkovitz, Y. and Baraban, J. M. 2001. A dominant negative inhibitor of the Egr family of transcription regulatory factors suppresses cerebellar granule cell apoptosis by blocking c-Jun activation. J. Neurosci. 21, 5893-5901.
  17. Li, H., Wang, Z. X. and Wu J. W. 2014. Purification, characterization and docking studies of the HIN domain of human myeloid nuclear differentiation antigen (MNDA). Biotechnol. Lett. 36, 899-905. https://doi.org/10.1007/s10529-013-1432-y
  18. Lidwell, K. and Griffiths, R. 2002. Possible role for the FosB/JunD AP-1 transcription factor complex in glutamate-mediated excitotoxicity in cultured cerebellar granule cells. J. Neurosci. Res. 62, 427-439.
  19. Marcus, D. L., Strafaci, J. A, Miller, D. C., Masia, S., Thomas, C. G., Rosman, J., Hussain, S. and Freedman, M. L. 1998. Quantitative neuronal c-fos and c-jun expression in Alzheimer’s disease. Neurobiol. Aging 19, 393-400. https://doi.org/10.1016/S0197-4580(98)00077-3
  20. Mayer, M. L. and Westbrook, G. L. 1987. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28, 197-206. https://doi.org/10.1016/0301-0082(87)90011-6
  21. Mayer, M. L., Westbrook, G. L. and Guthrie, P. B. 1984. Voltage-dependent block by Mg2+ of NMDA Responses in spinal cord neurons. Nature 309, 261-263. https://doi.org/10.1038/309261a0
  22. Mcdonald, J. W. and Johnston, M. V. 1990. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res. Rev. 15, 41-70 https://doi.org/10.1016/0165-0173(90)90011-C
  23. Meldrum, B. S. 2000. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007-1015.
  24. Hashimoto, M. and Hibi, M. 2012. Development and evolution of cerebellar neural circuits. Dev. Growth Differ. 54, 373-389. https://doi.org/10.1111/j.1440-169X.2012.01348.x
  25. Hirai, H., Kirsch, J., Laube, B., Betz, H. and Kuhse, J. 1996. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identfication of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc. Natl. Acad. Sci. USA 93, 6031-6036. https://doi.org/10.1073/pnas.93.12.6031
  26. Hou, Y. N., Cebers, G., Terenius, L. and Liljequist, S. 1997. Characterization of NMDA- and AMPA-induced enhancement of AP-1 DNA binding activity in rat cerebellar granule cells. Brain Res. 754, 79-87. https://doi.org/10.1016/S0006-8993(97)00049-8
  27. Hume, R. I., Digledine, R. and Heinemann, S. F. 1991. Identification of a site in glutamate receptor subunits that controls calcium permeability. Sciences 253, 1028-1031. https://doi.org/10.1126/science.1653450
  28. Ishizaki, Y. 2006. Control of proliferation and differentiation of neural precursor cells: focusing on the developing cerebellum. J. Pharmacol. Sci. 101, 183-188. https://doi.org/10.1254/jphs.CPJ06011X
  29. Järlestedt, K., Rousset, C. I., Ståhlberg, A., Sourkova, H., Atkins, A. L., Thornton, C., Barnum, S. R., Wetsel, R. A., Dragunow, M., Pekny, M., Mallard, C., Hagberg, H. and Pekna, M. 2013. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J. 27, 3797-3804. https://doi.org/10.1096/fj.13-230011
  30. Karin, M. 1995. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483-16486. https://doi.org/10.1074/jbc.270.28.16483
  31. Kleven, G. A., Booth, H. M., Voogd, M. and Ronca, A. E. 2014. L-dopa reverses behavioral deficits in the Pitx3 mouse fetus. Behav. Neurosci. 128, 749-59 https://doi.org/10.1037/bne0000016
  32. An derson, A. J., Su, J. H. and Cotman, C. W. 1996. DNA damage and apoptosis in Alzheimer’s disease:colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem. J. Neurosci. 16, 1710-1719.
  33. Bazhenov, A. V. and Kleshchevnikov, A. M. 1999. Reciprocal inhibition of the AMPA and NMDA components of excitatory postsynaptic potentials in field CA1 of the rat hippocampus in vitro. Neurosci. Behav. Physiol. 29, 719-725. https://doi.org/10.1007/BF02462489
  34. Carulli, D., Buffo, A., Botta, C., Altruda, F. and Strata, P. 2002. Regenerative and survival capabilities of Purkinje cells overexpressing c-Jun. Eur. J. Neurosci. 16, 105-118. https://doi.org/10.1046/j.1460-9568.2002.02077.x
  35. Catania, M. V., Copani, A., Calogero, A., Ragonese, G. I., Condorelli, D. and Nicoletti, F. 1999. An enhanced expression of the immediate early gene, Egr-1, is associated with neuronal apoptosis in culture. Neuroscience 91, 1529-1538. https://doi.org/10.1016/S0306-4522(98)00544-2
  36. Cheyou, E. R., Youreva, V. and Srivastava, A. K. 2014. Involvement of the early growth response protein 1 in vascular pathophysiology: an overview. Indian J. Biochem. Biophys. 51, 457-66
  37. Gillardon, F., Baurle, J., Wickert, H., Grusser-Cornehls, U. and Zimmermann, M. 1995. Differential regulation of bcl-2, bax, c-fos, junB, and krox-24 expression in the cerebellum of Purkinje cell degeneration mutant mice. J. Neurosci. Res. 41, 708-715. https://doi.org/10.1002/jnr.490410517