DOI QR코드

DOI QR Code

Study of Genetic Diversity among Simmental Cross Cattle in West Sumatra Based on Microsatellite Markers

  • Agung, Paskah Partogi ;
  • Saputra, Ferdy ;
  • Septian, Wike Andre ;
  • Lusiana, Lusiana ;
  • Zein, Moch. Syamsul Arifin ;
  • Sulandari, Sri ;
  • Anwar, Saiful ;
  • Wulandari, Ari Sulistyo ;
  • Said, Syahruddin ;
  • Tappa, Baharuddin
  • Received : 2015.02.23
  • Accepted : 2015.07.17
  • Published : 2016.02.01

Abstract

A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia.

Keywords

Simmental;West Sumatra;Microsatellite;Genetic Diversity

References

  1. Agung, P. P., M. Ridwan, Handrie, Indriawati, F. Saputra, Supraptono, and Erinaldi. 2014. Morphological profile and estimation of genetic distance of simmental crossbred. Indonesian J. Anim. Vet. Sci. 19:112-122.
  2. Bennett, P. 2000. Microsatellites. J. Clin. Pathol: Mol. Pathol. 53:177-183. https://doi.org/10.1136/mp.53.4.177
  3. Cervini, M., F. Henrique-Silva, N. Mortari, and E. Matheucci Jr. 2006. Genetic variability of 10 microsatellite markers in the characterization of Brazilian Nellore cattle (Bos indicus). Genet. Mol. Biol. 29:486-490. https://doi.org/10.1590/S1415-47572006000300015
  4. Choroszy, B., A. Janik, Z. Choroszy, and T. Zabek. 2006. Polymorphism of selected microsatellite DNA sequences in Simmental cattle chosen for identification of QTLs for meat traits. Anim. Sci. Pap. Rep. 24(Suppl 2):71-77.
  5. Czernekova, V., T. Kott, G. Dudkova, Z. Sztankoova, and J. Soldat. 2006. Genetic diversity between seven central European cattle breeds as revealed by microsatellite analysis. Czech J. Anim. Sci. 51:1-7.
  6. Dadi, H., M. Tibbo, Y. Takahashi, K. Nomura, H. Hanada, and T. Amano. 2008. Microsatellite analysis reveals high genetic diversity but low genetic structure in Ethiopian indigenous cattle populations. Anim. Genet. 39:425-431. https://doi.org/10.1111/j.1365-2052.2008.01748.x
  7. Earl, D. A. and B. M. vonHoldt. 2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet. Resour. 4:359-361. https://doi.org/10.1007/s12686-011-9548-7
  8. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  9. FAO. 2011. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. http://www.fao.org/docrep/014/i2413e/i2413e00.htm Accessed February 10, 2015.
  10. Glaubitz, J. C. 2004. Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 4:309-310. https://doi.org/10.1111/j.1471-8286.2004.00597.x
  11. Janik A., T. Zabek, A. Radko, and M. Natonek. 2001. Evaluation of polymorphism at 11 microsatellite loci in Simmental cattle raised in Poland. Ann. Anim. Sci. 1:19-29.
  12. Jevrosima, S., Z. Stanimirovic, V. Dimitrijevic, V. Stojic, N. Fratric, and M. Lazarevic. 2009. Microsatellite DNA polymorphism and its usefulness for pedigree verification in Simmental cattle from Serbia. Acta Vet. (Beograd) 59:621-631. https://doi.org/10.2298/AVB0906621S
  13. Jombart, T. 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403-1405. https://doi.org/10.1093/bioinformatics/btn129
  14. Kalinowski S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16:1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  15. Kesvulu, P. C., G. N. Rao, A. S. N. Ahmed, and B. R. Gupta. 2009. Molecular genetic characterization of Punganur cattle. Indian J. Vet. Anim. Sci. Res. 5:179-185.
  16. Mao, Y., H. Chang, Z. Yang, L. Zhang, M. Xu, G. Chang, W. Sun, G. Song, and D. Ji. 2008. The analysis of genetic diversity and differentiation of six Chinese cattle populations using microsatellite markers. J. Genet. Genomics 35:25-32. https://doi.org/10.1016/S1673-8527(08)60004-1
  17. Maretto, F., J. Ramljak, F. Sbarra, M. Penasa, R. Mantovani, A. Ivankovic, and G. Bittante. 2012. Genetic relationships among Italian and Croatian Podolian cattle breeds assessed by microsatellite markers. Livest. Sci. 150:256-264. https://doi.org/10.1016/j.livsci.2012.09.011
  18. Movahedin, M. R., C. Amirinia, A. Noshary, and S. A. Mirhadi. 2010. Detection of genetic variation in sample of Iranian proofed Holstein cattle by using microsatellite marker. Afr. J. Biotechnol. 9:9042-9045.
  19. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583- 590.
  20. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.
  21. Putnova, L., I. Vrtkova, P. Srubarova, and L. Stehlik. 2011. Utilization of a 17 microsatellites set for bovine traceability in Czech cattle populations. Iranian J. Appl. Anim. Sci. 1:31-37.
  22. R Development Core Team. 2015. R: A language and environment for statistical computing. http://www.R-project.org Accessed April 28, 2015.
  23. Radko, A., A. Zyga, T. Zabek, and E. Slota. 2005. Genetic variability among Polish Red, Hereford and Holstein-Friesian cattle raised in Poland based on analysis of microsatellite DNA sequences. J. Appl. Genet. 46:89-91.
  24. Rehman, M. S. and M. S. Khan. 2009. Genetic diversity of Hariana and Hissar cattle from Pakistan using microsatellite analysis. Pakistan Vet. J. 29:67-71.
  25. Riojas-Valdes, V. M., J. C. Gomes-de-la-Fuente, J. M. Garza- Lozano, D. C. Gallardo-Blanco, J. N. De Tellitu-Schutz, A. Wong-Gonzales, G. Davalos-Aranda, and J. A. Salinas- Melendez. 2009. Exclusion probabilities of 8 DNA microsatellites in 6 cattle breeds from Northeast Mexico. J. Anim. Vet. Adv. 8:62-66.
  26. Rutledge, L. Y., C. J. Garroway, K. M. Loveless, and B. R. Patterson. 2010. Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves. Heredity 105:520-531. https://doi.org/10.1038/hdy.2010.6
  27. Siregar A. R., J. Bestari, R. H. Matondang, Y. Sani, and H. Panjaitan. 1999. Penentuan sistem breeding sapi potong program IB di propinsi Sumatera Barat. http://peternakan.litbang.pertanian.go.id/english/index.php?opt ion=com_content&view=article&id=3063%3Asemnas&catid= 310%3Asemnas1999&Itemid=121 Accessed January 15, 2015.
  28. Statistics Indonesia. 2011. Data collection beef cattle, dairy cattle, and buffalo 2011 (PSPK2011). http://www.bps.go.id/ index.php/publikasi/681
  29. Suh, S., Y.-S. Kim, C.-Y. Cho, M.-J. Byun, S.-B. Choi, Y.-G. Ko, C. W. Lee, K.-S. Jung, K. H. Bae, and J.-H. Kim. 2014. Assessment of genetic diversity, relationships and structure among Korean native cattle breeds using microsatellite markers. Asian Australas. J. Anim. Sci. 27:1548-1553. https://doi.org/10.5713/ajas.2014.14435
  30. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  31. Yeh, F. C. and T. J. B. Boyle. 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129:157-163.
  32. Zhou, G. L., H. G. Jin, Q. Zhu, S. L. Guo, and Y. H. Wu. 2005. Genetic diversity analysis of five cattle breeds native to China using microsatellites. J. Genet. 84:77-80. https://doi.org/10.1007/BF02715894

Acknowledgement

Supported by : Research Center for Biotechnology-Indonesian Institute of Sciences