Effects of Cellulase Supplementation on Nutrient Digestibility, Energy Utilization and Methane Emission by Boer Crossbred Goats

  • Wang, Lizhi (Institute of Animal Nutrition, Sichuan Agricultural University) ;
  • Xue, Bai (Institute of Animal Nutrition, Sichuan Agricultural University)
  • Received : 2015.02.03
  • Accepted : 2015.05.23
  • Published : 2016.02.01


This study examined the effect of supplementing exogenous cellulase on nutrient and energy utilization. Twelve desexed Boer crossbred goats were used in a replicated $3{\times}3$ Latin square design with 23-d periods. Dietary treatments were basal diet (control, no cellulase), basal diet plus 2 g unitary cellulase/kg of total mixed ration dry matter (DM), and basal diet plus 2 g compound cellulase/kg of total mixed ration DM. Three stages of feeding trials were used corresponding to the three treatments, each comprised 23 d, with the first 14 d as the preliminary period and the following 9 d as formal trial period for metabolism trial. Total collection of feces and urine were conducted from the 4th d of the formal trial, and gas exchange measures were determined in indirect respiratory chambers in the last 3 d of the formal trial. Results showed that cellulase addition had no effect (p>0.05) on nutrient digestibility. Dietary supplementation of cellulase did not affect (p>0.05) N intake and retention in goats. Gross energy (GE) intake, fecal energy and urinary energy excretion, heat production were not affected (p>0.05) by the cellulase supplementation. Total methane emission (g/d), $CH_4$ emission as a proportion of live weight or feed intake (DM, organic matter [OM], digestible DM or digestible OM), or $CH_4$ energy output ($CH_4$-E) as a proportion of energy intake (GE, digestible energy, or metabolizable energy), were similar (p>0.05) among treatments. There was a significant (p<0.001) relationship between $CH_4$ and live weight (y = 0.645x+0.2, $R^2$ = 0.54), $CH_4$ and DM intake (y = 16.7x+1.4, $R^2$ = 0.51), $CH_4$ and OM intake (y = 18.8x+1.3, $R^2$ = 0.51) and $CH_4$-E and GE intake. Results from this study revealed that dietary supplementation of cellulase may have no effect on nutrient digestibility, nitrogen retention, energy metabolism, and methane emission in goat.


  1. Gado, H. M., A. Z. M. Salem, P. H. Robinson, and M. Hassan. 2009. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim. Feed Sci. Technol. 154:36- 46.
  2. Guan, H., K. M. Wittenberg, K. H. Ominski, and D. O. Krause. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84:1896-1906.
  3. Hristov, A. N., T. A. McAllister, and K. J. Cheng. 1998. Effect of dietary or abomasal supplementation of exogenous polysaccharide-degrading enzymes on rumen fermentation and nutrient digestibility. J. Anim. Sci. 76:3146-3156.
  4. IPCC, "2006 IPCC Guidelines for National Greenhouse Gas Inventories" Accessed on October 10, 2014.
  5. Jordan, E., D. K. Lovett, F. J. Monahan, J. Callan, B. Flynn, and F. P. O'Mara. 2006. Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. J. Anim. Sci. 84:162-170.
  6. Lewis, G. E., W. K. Sanchez, C. W. Hunt, M. A. Guy, G. T. Pritchard, B. I. Swanson, and R. J. Treacher. 1999. Effect of direct-fed fibrolytic enzymes on the lactational performance of dairy cows. J. Dairy Sci. 82:611-617.
  7. Lewis, G. E., C. W. Hunt, W. K. Sanchez, R. Treacher, G. Pritchard, and P. Feng. 1996. Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J. Anim. Sci. 74: 3020-3028.
  8. Littell R. C., G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. 1996. SAS System for Mixed Models. SAS Institute, Inc. Cary, NC, USA.
  9. Awawdeh, M. S. and B. S. Obeidat. 2011. Effect of supplemental exogenous enzymes on performance of finishing Awassi lambs fed olive cake-containing diets. Livest. Sci. 138:20-24.
  10. Ballard C. S., M. P. Carter, K. W. C. Tach, C. J. Sniffen, T. Sato, K. Uchida, A. Teo, U. D. Nhan, and T. H. Meng. 2003. Feeding fibrolytic enzymes to enhance DM and nutrient digestion and milk production by dairy cows. J. Dairy Sci. 86(Suppl. 1):150 (Abstr.).
  11. Beauchemin, K. A., M. Kreuzer, F. O'Mara, and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 48:21-27.
  12. Bhasker, T. V., D. Nagalakshmi, and D. S. Rao. 2013. Development of appropriate fibrolytic enzyme combination for maize stover and its effect on rumen fermentation in sheep. Asian Australas. J. Anim. Sci. 26:945-951.
  13. Bilik, K. and M. Lopuszanska-Rusek. 2010. Effect of adding fibrolytic enzymes to dairy cow rations on digestive activity in the rumen. Ann. Anim. Sci. 10:127-137.
  14. Brouwer E. 1965. Report on subcommittee on constants and factors. Proc. 3rd EAAP Symp on Energy Metabolism. pp 441- 443. Troon Publ., 11, Academic Press, London, UK.
  15. Chung, Y. H., M. Zhou, L. Holtshausen, T. W. Alexander, T. A. McAllister, L. L. Guan, M. Oba, and K. A. Beauchemin. 2012. A fibrolytic enzyme additive for lactating Holstein cow diets: ruminal fermentation, rumen microbial populations, and enteric methane emissions. J. Dairy Sci. 95:1419-1427.
  16. Eun, J. S. and K. A. Beauchemin. 2007. Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Anim. Feed Sci. Technol. 132:298-315.
  17. Abecia, L., P. G. Toral, A. I. Martin-Garcia, G. Martinez, N. W. Tomkins, E. Molina-Alcaide, C. J. Newbold, and D. R. Yanez- Ruiz. 2012. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. J. Dairy Sci. 95:2027-2036.
  18. McAllister, T. A., K. Stanford, H. D. Bae, R. J. Treacher, A. N. Hristov, J. Baah, J. A. Shelford, and K. J. Cheng. 2000. Effect of a surfactant and exogenous enzymes on digestibility of feed and on growth performance and carcass traits of lambs. Can. J. Anim. Sci. 80:35-44.
  19. Morgavi, D. P., K. A. Beauchemin, V. L. Nsereko, L. M. Rode, T. A. McAllister, and Y. Wang. 2004. Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose. J. Sci. Food Agric. 84:1083-1090.
  20. O'Connor-Robison, C. I., B. D. Nielsen, and R. Morris. 2007. Cellulase supplementation does not improve the digestibility of a high-forage diet in horses. J. Equine Vet. Sci. 27:535-538.
  21. Rode, L. M., W. Z. Yang, and K. A. Beauchemin. 1999. Fibrolytic enzyme supplements for dairy cows in early lactation. J. Dairy Sci. 82:2121-2126.
  22. Tang, S. X., Y. Zou, M. Wang, A. Z. M. Salem, N. E. Odongo, C. S. Zhou, X. F. Han, Z. L. Tan, M. Zhang, and Y. F. Fu. 2013. Effects of exogenous cellulase source on in vitro fermentation characteristics and methane production of crop straws and grasses. Anim. Nutr. Feed Technol. 13:489-505.
  23. Wang, Y., T. A. McAllister, L. M. Rode, K. A. Beauchemin, D. P. Morgavi, V. L. Nsereko, A. D. Iwaasa, and W. Yang. 2001. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 85:325-332.
  24. Yang, W. Z., K. A. Beauchemin, and L. M. Rode. 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 82:391-403.
  25. Yang, W. Z., K. A. Beauchemin, and L. M. Rode. 2000. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J. Dairy Sci. 83:2512-2520.

Cited by

  1. Effects of Total Mixed Rations Containing Treated or Untreated Soybean Meal on the Energy Utilization of Kacang Goats vol.17, pp.11, 2018,