Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements

  • Wang, Y. (College of Food and Biological Engineering, Qiqihar University) ;
  • Jin, L. (College of Food and Biological Engineering, Qiqihar University) ;
  • Wen, Q.N. (Agricultural Machinery Research Institute of Liaoning) ;
  • Kopparapu, N.K. (College of Food and Biological Engineering, Qiqihar University) ;
  • Liu, J. (College of Food and Biological Engineering, Qiqihar University) ;
  • Liu, X.L. (College of Food and Biological Engineering, Qiqihar University) ;
  • Zhang, Y.G. (Animal Science and Technology Institute, Northeast Agriculture University)
  • Received : 2015.04.21
  • Accepted : 2015.08.27
  • Published : 2016.02.01


The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a $4{\times}4$ Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established.


Supported by : National Natural Science Foundation


  1. AOAC. 1990. Association of Official Analytical Chemists, Official Methods of Analysis. 15th Edition. Washington, DC, USA.
  2. Abdelqader, M. M. and M. Oba. 2012. Lactation performance of dairy cows fed increasing concentrations of wheat dried distillers grains with solubles. J. Dairy Sci. 95:3894-3904.
  3. Abu-Ghazealeh, A. A., D. J. Schingoethe, and A. R. Hippen. 2001. Blood amino acids and milk composition from cows fed soybean meal, fish meal, or both. J. Dairy Sci. 84:1174-1181.
  4. Boucher, S. E., S. Calsamiglia, C. M. Parsons, M. D. Stern, M. Ruiz Moreno, M. Vazquez-Anon, and C. G. Schwab. 2009a. In vitro digestibility of individual amino acids in rumenundegraded protein: The modified three-step procedure and the immobilized digestive enzyme assay. J. Dairy Sci. 92:3939- 3950.
  5. Borucki-Castro, S. I., L. E. Phillip, H. Lapierre., P. W. Jardon and, and R. Berthiaume. 2007. Ruminal degradability and intestinal digestibility of protein and amino acids in treated soybean meal products. J. Dairy Sci. 90:810-812.
  6. Chiou, P. W. S., K. Chen, K. Kuo, J. Hsu, and B. Yu. 1995. Studies on the protein degradabilities of feedstuffs in Taiwan. Anim. Feed Sci. Technol. 55:215-226.
  7. Christen, K. A., D. J. Schingoethe, K. F. Kalscheur, A. R. Hippen, K. K. Karges, and M. L. Gibson. 2010. Response of lactating dairy cows to high protein distillers grains or 3 other protein supplements. J. Dairy Sci. 93:2095-2104.
  8. Crooker, B. A., J. H. Clark, R. D. Shanks, and G. C. Fahey Jr.. 1987. Effects of ruminal exposure on the amino acid profile of feeds. Can. J. Anim. Sci. 67:1143-1148.
  9. Cros, P., M. Vernay, C. Bayourthe, and R. Moncou-Ion. 1992. Influence of extrusion on ruminal and intestinal disappearance of amino acids in whole horsebean. Can. J. Anim. Sci. 72: 359- 366.
  10. De Boer, G., J. J. Murphy, and J. J. Kennedy. 1987. Mobile nylon bag for estimating intestinal availability of rumen undegradable protein. J. Dairy Sci. 70:977-982.
  11. Erasmus, L. J., P. M. Botha, and C. W. Cruywagen. 1994. Amino acid profile and intestinal digestibility in dairy cows of rumenundegradable protein from various feedstuffs. J. Dairy Sci. 77:541-551.
  12. FOBI Network. 2011. Wheat DDGS Feed Guide, 1st ed. Feed Opportunities for Biofuels Industries. Canadian International Grains Institute, Winnipeg, Canada.
  13. Gerrard, J. A. 2002. Protein-protein crosslinking in food: methods, consequences, applications. Trends Food Sci. Technol. 13:391- 399.
  14. Gonzalez, J., C. Centeno, F. Lamrani, and C. A. Rodrigez. 2001. In situ rumen degradation of amino acids from different feeds corrected for microbial contamination. Anim. Res. 50:253-264.
  15. Hagen, S. R., B. Frost, and J. Augustin. 1989. Precolumn phenylisothiocyanate derivatization and liquid chromatography of amino acids in food. J. Assoc. Off. Anal. Chem. 72:912-916.
  16. Harstad, O. M. and E. Prestlokken. 2001. Rumen degradability and intestinal indigestibility of individual amino acids in corn gluten meal, canola meal and fish meal determined in situ. Anim. Feed Sci. Technol. 94:127-135.
  17. Heendeniya, R. G., D. A. Christensen, D. D. Maenz, J. J. McKinnon, and P. Yu. 2012. Protein fractionation byproduct from canola meal for dairy cattle. J. Dairy Sci. 95:4488-4500.
  18. Hvelplund, T., M. R. Weisbjerg, and L. S. Andersen. 1992. Estimation of the true digestibility of rumen undegraded dietary protein in the small intestine of ruminants by the mobile bag technique. Acta Agric. Scand. Sec. A. Anim. Sci. 42:34-39.
  19. Kohn, R. A. and M. S. Allen. 1992. Storage of fresh and ensiled forages by freezing affects fiber and crude protein fractions. J. Sci. Food Agric. 58:215-220.
  20. Li, C., J. Q. Li, W. Z. Yang, and K. A. Beauchemin. 2012. Ruminal and intestinal amino acid digestion of distiller's grain vary with grain source and milling process. Anim. Feed Sci. Technol. 175:121-130.
  21. Licitra, G., T. M. Hernandez, and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358.
  22. Mjoun, K., K. F. Kalscheur, A. R. Hippen, and D. J. Schingoethe. 2010. Ruminal degradability and intestinal digestibility of protein and amino acids in soybean and corn distillers grains products. J. Dairy Sci. 93:4144-4154.
  23. Maxin, G., D. R. Ouellet, and H. Lapierre. 2013. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. J. Dairy Sci. 96:5151-5160.
  24. Maiga, H. A., D. J. Schingoethe, and J. E. Henson. 1996. Ruminal degradation, amino acid composition, and intestinal digestibility of the residual components of five protein supplements. J. Dairy Sci. 79:1647-1653.
  25. Messman, M. A., W. P. Weiss, and D. O. Erickson. 1992. Effects of nitrogen fertilization and maturity of bromegrass on nitrogen and amino acid utilization by cows. J. Anim. Sci. 70: 566-575.
  26. Mustafa, A. F., D. A. Christensen, J. J. McKinnon, and R. Newkirk. 2000. Effects of stage of processing of canola seed on chemical composition and in vitro protein degradability of canola meal and intermediate products. Can. J. Anim. Sci. 80: 211-214.
  27. National Research Council (NRC). 2001. Nutrient Requirement of Dairy Cattle, 7th revised Edition. National Academy Press. Washington, DC, USA
  28. Oba, M., G. B. Penner, T. D. Whyte, and K. Wierenga. 2010. Effects of feeding triticale dried distillers grains plus solubles as a nitrogen source on productivity of lactating dairy cows. J. Dairy Sci. 93:2044-2052.
  29. O'Mara, F. P., J. J. Murphy, and M. Rath. 1997. The amino acid composition of protein feedstuffs before and after ruminal incubation and after subsequent passage through the intestines of dairy cows. J. Anim. Sci. 75:1941-1949.
  30. Piepenbrink, M. S. and D. J. Schingoethe. 1998. Ruminal degradation, amino acid composition, and estimated intestinal digestibilities of four protein supplements. J. Dairy Sci. 81: 454-461.
  31. Paz., H. A., T. J. Klopfenstein, D. Hostetler, S. C. Fernando, E. Castillo-Lopez, and P. J. Kononoff. 2014. Ruminal degradation and intestinal digestibility of protein and amino acids in highprotein feedstuffs commonly used in dairy diets. J. Dairy Sci. 97:6485-6498.
  32. Robinson, P. H., K. Karges, and M. L. Gibson. 2008. Nutritional evaluation of four co-product feedstuffs from the motor fuel ethanol distillation industry in the Midwestern USA. Anim. Feed Sci. Technol. 146:345-352.
  33. SAS Institute Inc. 2012. SAS Online Doc 9.3.1. SAS Institute Inc, Cary, NC, USA.
  34. Socha, M. T., D. E. Putnam, B. D. Garthwaite, N. L. Whitehouse, N. A. Kierstead, C. G. Schwab, G. A. Ducharme, and J. C. Robert. 2005. Improving intestinal amino acid supply of preand postpartum dairy cows with rumen-protected methionine and lysine. J. Dairy Sci. 88:1113-1126.
  35. Sova, A. D., S. J. LeBlanc, B. W. McBride, and T. J. DeVries. 2014. Accuracy and precision of total mixed rations fed on commercial dairy farms. J. Dairy Sci. 97:562-571.
  36. Sniffen, C., J. D. O'connor, P. J. Van Soest, D. G. Fox, and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577.
  37. Taghizadeh, A., M. Danesh Mesgaran, R. Valizadeh, F. Eftekhar Shahroodi, and K. Stanford. 2005. Digestion of feed amino acids in the rumen and intestine of steers measured using a mobile nylon bag technique. J. Dairy Sci. 88:1807-1814.
  38. Van Straalen, W. M., J. J. Odigaand, and W. Mostert. 1997. Digestion of feed amino acids in the rumen and small intestine of dairy cows measured with nylon-bag techniques. Br. J. Nutr. 77:83-97.
  39. Von Keyserlingk, M. A. G. and G. W. Mathison. 1989. Use of the in situ technique and passage rate constants in predicting voluntary intake and apparent digestibility of forages by steers. Can. J. Anim. Sci. 69:973-987.
  40. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
  41. Van Straalen, W. M., F. M. Dooper, A. M. Antoniewicz, I. Kosmala, and A. M. Van Vuuren. 1993. Intestinal digestibility of protein from grass and clover in dairy cows measured with the mobile nylon bag and other methods. J. Dairy Sci. 76: 2970-2981.
  42. Van Straalen, W. M., J. J. Odinga, and W. Mostert. 1997. Digestion of feed amino acids in the rumen and small intestine of dairy cows measured with nylon-bag techniques. Br. J. Nutr. 77:83-97.
  43. Voigt, J., B. Piatkowski, H. Englelman, and E. Rudolph. 1985. Measurement of the postruminal digestibility of crude protein by the bag technique in cows. Arch. Tierernahr. 35: 555-562.