DOI QR코드

DOI QR Code

A Review : Improvement of Electrical Performance in the Oxide Semiconductor Thin Film Transistor Using Various Treatment

산화물 반도체의 다양한 처리를 통한 박막트랜지스터의 전기적 특성 향상

Kim, Taeyong;Jang, Kyungsoo;Raja, Jayapal;Phu, Nguyen Thi Cam;Lee, Sojin;Kang, Seungmin;Trinh, Than Thuy;Lee, Youn-Jung;Yi, Junsin
김태용;장경수;;;이소진;강승민;;이윤정;이준신

  • Received : 2015.11.04
  • Accepted : 2015.12.24
  • Published : 2016.01.01

Abstract

The ultimate aims of display market is transparent or flexible. Researches have been carried out for various applications. It has been possible to reduced the process steps and get good electrical properties for semiconductors with large optical bandgaps. Oxide semiconductors have been established as one of the leading and promising technology for next generation display panels. In this paper, alternative treatment processes have been tried for oxide semiconductors of thin film transistors to increase the electrical properties of the thin film transistors and to investigate the mechanisms. There exist a various oxide semiconductors. Here, we focused on InGaZnO, ZnO and InSnZnO which are commercialized or researched actively.

Keywords

InGaZnO;ZnO;InSnZnO;Hydrogenation;N-doped;Oxide TFTs

References

  1. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: http://dx.doi.org/10.1002/adma.201103228] https://doi.org/10.1002/adma.201103228
  2. H. A. Klasens and H. Koelmans, Solid-State Electron., 7, 701 (1964). [DOI: http://dx.doi.org/10.1016/0038-1101(64)90057-7] https://doi.org/10.1016/0038-1101(64)90057-7
  3. M.W.J. Prins, K. O. Grosse-Holz, G. Muller, J.F.M Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, Appl. Phys. Lett., 68, 3650 (1996). [DOI: http://dx.doi.org/10.1063/1.115759] https://doi.org/10.1063/1.115759
  4. C. H. Seager, D. C. McIntyre, W. L. Warren, and B. A. Tuttle, Appl. Phys. Lett., 68, 2660 (1996). [DOI: http://dx.doi.org/10.1063/1.116273] https://doi.org/10.1063/1.116273
  5. A. Aoki and H. Sasakura, Jpn. J. Appl. Phys., 9, 582 (1970). [DOI: http://dx.doi.org/10.1143/JJAP.9.582] https://doi.org/10.1143/JJAP.9.582
  6. K. S. Jang, J. Raja, T. Y. Kim, S. M. Kang, S. J. Lee, N.T.C. Phu, T. T. Trinh, Y. J. Lee, and J. S. Yi, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 351 (2015).
  7. T. Arai, Inf. Display, 20, 156 (2012). [DOI: http://dx.doi.org/10.1889/JSID20.3.156] https://doi.org/10.1889/JSID20.3.156
  8. K. Remashan, D. K. Hwang, S. J. Park, and J. H. Jang, IEEE Trans. Electron Dev., 55, 2736 (2008). [DOI: http://dx.doi.org/10.1109/TED.2008.2003021] https://doi.org/10.1109/TED.2008.2003021
  9. Y. H. Kang, Adv. Electron. Mater., 1, 1400006 (2015). https://doi.org/10.1002/aelm.201400006
  10. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Shen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, Solid-state Electron., 54, 1497 (2010). [DOI: http://dx.doi.org/10.1016/j.sse.2010.08.001] https://doi.org/10.1016/j.sse.2010.08.001
  11. Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys., 88, 498 (2000). [DOI: http://dx.doi.org/10.1063/1.373685] https://doi.org/10.1063/1.373685
  12. P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, and H. P. Shieh, Appl. Phys. Lett., 98, 052102 (2011). [DOI: http://dx.doi.org/10.1063/1.3551537] https://doi.org/10.1063/1.3551537
  13. J. Raja, K. S. Jang, N. Balaji, W. J. Choi, T. T. Trinh, and J. S. Yi, Appl. Phys. Lett., 102, 083505 (2013). [DOI: http://dx.doi.org/10.1063/1.4793535] https://doi.org/10.1063/1.4793535
  14. H. Y. Huang, Device Research Conference (IEEE, Santa Barbara, USA, 2014) p. 161.
  15. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, Appl. Phys. Lett., 90, 262106 (2007). [DOI: http://dx.doi.org/10.1063/1.2753107] https://doi.org/10.1063/1.2753107

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)