DOI QR코드

DOI QR Code

Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face

N-polar면의 선택적 에칭 방법을 통한 Free-standing GaN 기판의 Bowing 제어

  • Received : 2015.11.23
  • Accepted : 2015.12.21
  • Published : 2016.01.01

Abstract

In this paper, we report that selective etching on N-polar face by EC (electro-chemical)-etching effect on the reduction of bowing and strain of FS (free-standing)-GaN substrates. We applied the EC-etching to concave and convex type of FS-GaN substrates. After the EC-etching for FS-GaN, nano porous structure was formed on N-polar face of concave and convex type of FS-GaN. Consequently, the bowing in the convex type of FS-GaN substrate was decreased but the bowing in the concave type of FS-GaN substrate was increased. Furthermore, the FWHM (full width at half maximum) of (1 0 2) reflection for the convex type of FS-GaN was significantly decreased from 601 to 259 arcsec. In the case, we confirmed that the EC-etching method was very effective to reduce the bowing in the convex type of FS-GaN and the compressive stress in N-polar face of convex type of FS-GaN was fully released by Raman measurement.

Keywords

GaN;Electro-chemical etching;Bowing;Freestanding GaN;Wet process

References

  1. The Blue Laser diode (Springer Verlag, Berlin, 1997) p. 12.
  2. C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol., 0, 1627 (2003). [DOI: http://dx.doi.org/10.1002/pssc.200303140] https://doi.org/10.1002/pssc.200303140
  3. M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, J. Cryst. Growth, 303, 472 (2007). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2006.12.041] https://doi.org/10.1016/j.jcrysgro.2006.12.041
  4. B. Monemar, H. Larsson, C. Hemmingsson, I. G. Ivanov, and D. Gogova, J. Cryst. Growth, 281, 17 (2005). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2005.03.040] https://doi.org/10.1016/j.jcrysgro.2005.03.040
  5. K. M. Chen, Y. H. Yeh, Y. Hao, C. H. Chiang, D. R. Yang, C. L. Chao, T. W. Chi, Y. H. Fang, J. D. Tsay, and W. I. Lee, J. Cryst. Growth, 312, 3574 (2010). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2010.09.044] https://doi.org/10.1016/j.jcrysgro.2010.09.044
  6. Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, Nanotechnology, 22, 045603 (2011). [DOI: http://dx.doi.org/10.1088/0957-4484/22/4/045603] https://doi.org/10.1088/0957-4484/22/4/045603
  7. J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, Appl. Phys. Lett., 94, 221907 (2009). [DOI: http://dx.doi.org/10.1063/1.3153116] https://doi.org/10.1063/1.3153116
  8. L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, ACS Appl. Mater. Interfaces, 6, 985 (2014). [DOI: http://dx.doi.org/10.1021/am404285s] https://doi.org/10.1021/am404285s
  9. P. Perlin, C. J.auberbie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, Phys. Rev. B, 45, 83 (1992). [DOI: http://dx.doi.org/10.1103/PhysRevB.45.83] https://doi.org/10.1103/PhysRevB.45.83
  10. C. Kisielowski, J. Krueger, S. Ravimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B, 54, 17745 (1996). [DOI: http://dx.doi.org/10.1103/PhysRevB.54.17745] https://doi.org/10.1103/PhysRevB.54.17745
  11. M. Seon, T. Prokfyeva, M. Holtz, S. A. Nikishin, N. N. Fleev, and H. Temkin, Appl. Phys. Lett., 76, 1842 (2000). [DOI: http://dx.doi.org/10.1063/1.126186] https://doi.org/10.1063/1.126186
  12. T. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S. A. Nikishin, N. N. Fleev, H. Temkin, and S. Zollner, Phys. Lett., 76, 1842 (2000).
  13. Y. J. Choi, H. K Oh, J. G. Kim, H. H. Hwang, H. Y. Lee, W. J. Lee, B. C. Shin, and J. H. Hwang, Phys. Status Solidi C, 7, 1770 (2010). [DOI: http://dx.doi.org/10.1002/pssc.200983632] https://doi.org/10.1002/pssc.200983632
  14. G. Nootz, A. Schulte, and L. Chernyak, Appl. Phys. Lett., 80, 1355 (2002). [DOI: http://dx.doi.org/10.1063/1.1449523] https://doi.org/10.1063/1.1449523

Acknowledgement

Supported by : 산업통상자원부