DOI QR코드

DOI QR Code

Partial Discharge Characteristics of XLPE According to Electrode Shape and Void

전극형상 및 보이드에 따른 XLPE의 부분방전 특성

Shin, Jong-Yeol;Kim, Guin-sik;Hong, Jin-Woong
신종열;김균식;홍진웅

  • Received : 2015.12.16
  • Accepted : 2015.12.24
  • Published : 2016.01.01

Abstract

Transmission equipment is mainly used for the XLPE (cross-linked polyethylene) insulation cable for ultra high voltage power to minimize power loss. The experiment examined the partial discharge characteristics according to the insertion of the bar electrode and needle electrode into the XLPE specimen and the air voids. XLPE insulation cable manufactured by T. company and tungsten electrode material by K. company were used for specimens, by adhering conductive tape on the semi-conductive material of the lower electrode of XLPE specimen with the dimension of $16{\times}40{\times}30$ [mm] was used as negative electrode. In order to investigate the PD with ${\phi}$-q-n of XLPE specimen according to the electrode shape and the size of air voids. we examined the PD by varying the voltage after applying voltage of 3~20 kV on the electrode. Therefore, it was confirmed from the result of PD characteristics of specimen that the larger the air void than the gap between electrode (+) and electrode(-), the larger effect on the discharge when the bar electrode and needle electrode inserted into XLPE, and the closer the distance between the insulation and the needle electrode, the faster insulation breakdown.

Keywords

Partial discharge;Electrical field distribution;Bar electrode;Needle electrode

References

  1. S. Singha and M. J. Thomas, IEEE Transactions on Dielectric and Elecrical Insulation, 15, 12 (2008). [DOI: http://dx.doi.org/10.1109/T-DEI.2008.4446732] https://doi.org/10.1109/T-DEI.2008.4446732
  2. S. Masuda, S. Okuzumi, R. Kurniant, Y. Murakami, M. Nagao, Y. Murata, and Y. Sekiguchi, IEEE, 2007 Annual Report Conference on Electrical Insulation and Dielectric, 290 (2007).
  3. J. Y. Shin, H. D. Park, J. Y. Lee, and J. W. Hong, Trans. Electr. Electron. Mater., 11, 42 (2010). [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.1.042] https://doi.org/10.4313/TEEM.2010.11.1.042
  4. K. lida, J. S. Kim, S. Nakamura, and G. Sawa, IEEE Trans. Electr. Insul., 27, 301 (1992).
  5. S. S. Bamji, A. T. Bulinski, and R. J. Densley, IEEE Trans. on Electrical Insulation, EI-21 (1986).
  6. R. M. Hill and A. K. Jonscher, Comtemp. Poly., 24, 77 (1983).
  7. M. R. Wertheimer, L. Paquin, H. P. Schreiber, and S. A. Boggs, IEEE Conference Record of IEEE Symposium on Electrical Insulation (1976).
  8. K. Yahagi, IEEE Trans. on Elect. Insul., EI-15, 241 (1980). https://doi.org/10.1109/TEI.1980.298316
  9. F. W. Billneyer, Textbook of Polymer Science (Inter. Sci. Pub., John Wiley and Son, New York, 1980). p. 141.
  10. M. Ieda, G. Sawa, and S. Kato, J. of Appl. Phys., 3737 (1971). [DOI: http://dx.doi.org/10.1063/1.1659678] https://doi.org/10.1063/1.1659678
  11. T. Tanaka, G. C. Montanari, and R. Mulhaupt, IEEE Transactions on Dielectric and Electrical Insulation, 11, 763 (2004). [DOI: http://dx.doi.org/10.1109/TDEI.2004.1349782] https://doi.org/10.1109/TDEI.2004.1349782