DOI QR코드

DOI QR Code

Nanomechanical behaviors and properties of amyloid fibrils

Choi, Bumjoon;Lee, Sang Woo;Eom, Kilho

  • Received : 2015.04.03
  • Accepted : 2015.10.22
  • Published : 2016.01.25

Abstract

Amyloid fibrils have recently been considered as an interesting material, since they exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is larger than that of other protein materials. Despite recent findings of these excellent mechanical properties for amyloid fibrils, it has not been fully understood how these excellent mechanical properties are achieved. In this work, we have studied the nanomechanical deformation behaviors and properties of amyloid fibrils such as their elastic modulus as well as fracture strength, by using atomistic simulations, particularly steered molecular dynamics simulations. Our simulation results suggest the important role of the length of amyloid fibrils in their mechanical properties such that the fracture force of amyloid fibril is increased when the fibril length decreases. This length scale effect is attributed to the rupture mechanisms of hydrogen bonds that sustain the fibril structure. Moreover, we have investigated the effect of boundary condition on the nanomechanical deformation mechanisms of amyloid fibrils. It is found that the fracture force is critically affected by boundary condition. Our study highlights the crucial role of both fibril length and boundary condition in the nanomechanical properties of amyloid fibrils.

Keywords

amyloid fibrils;mechanical deformation mechanisms;molecular dynamics simulation;fracture property;boundary condition

References

  1. Buehler, M.J., Keten, S. and Ackbarow, T. (2008), "Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture", Prog. Mater. Sci., 53(8), 1101-1241. https://doi.org/10.1016/j.pmatsci.2008.06.002
  2. Bustamante, C., Bryant, Z. and Smith, S.B. (2003), "Ten years of tension: Single-molecule DNA mechanics", Nature, 421(6921), 423-427. https://doi.org/10.1038/nature01405
  3. Cherny, I. and Gazit, E. (2008), "Amyloids: Not only pathological agents but also ordered nanomaterials", Angew. Chem. Int. Ed., 47(22), 4062-4069. https://doi.org/10.1002/anie.200703133
  4. Choi, B., Yoon, G., Lee, S.W. and Eom, K. (2015), "Mechanical deformation mechanisms and properties of amyloid fibrils", Phys. Chem. Chem. Phys., 17(2), 1379-1389. https://doi.org/10.1039/C4CP03804E
  5. Engel, M.F.M., Khemtemourian, L., Kleijer, C.C., Meeldijk, H.J.D., Jacobs, J., Verkleij, A.J., de Kruijff, B., Killian, J.A. and Hoppener, J.W.M. (2008), "Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane", Proc. Natl. Acad. Sci. USA., 105(16), 6033-6038. https://doi.org/10.1073/pnas.0708354105
  6. Eom, K. (2011), Simulations in Nanobiotechnology, CRC Press, Boca Raton, FL, USA.
  7. Eom, K., Li, P.C., Makarov, D.E. and Rodin, G.J. (2003), "Relationship between the mechanical properties and topology of cross-linked polymer molecules: Parallel strands maximize the strength of model polymers and protein domains", J. Phys. Chem. B., 107(34), 8730-8733.
  8. Eom, K., Makarov, D.E. and Rodin, G.J. (2005), "Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single-molecule pulling experiments", Phys. Rev. E., 71(2), 021904. https://doi.org/10.1103/PhysRevE.71.021904
  9. Fitzpatrick, A.W.P., Park, S.T. and Zewail, A.H. (2013), "Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy", Proc. Natl. Acad. Sci. U.S.A., 110(27), 10976-10981. https://doi.org/10.1073/pnas.1309690110
  10. Gao, M., Wilmanns, M. and Schulten K. (2002), "Steered molecular dynamics studies of titin I1 domain unfolding", Biophys. J., 83(6), 3435-3445. https://doi.org/10.1016/S0006-3495(02)75343-5
  11. Gere, J.M. (2003), Mechanics of Materials, (6th Edition), Thomson Learning, Belmont, CA, USA.
  12. Gosline, J., Guerette, P., Ortlepp, C. and Savage, K. (1999), "The mechanical design of spider silks: From fibroin sequence to mechanical function", J. Exp. Biol., 202(23), 3295-3303.
  13. Hamley, I.W. (2012), "The amyloid beta peptide: A chemist's perspective role in Alzheimer's and Fibrillization", Chem. Rev., 112(10), 5147-5192. https://doi.org/10.1021/cr3000994
  14. Hoppener, J.W.M., Ahren, B. and Lips, C.J.M. (2000), "Islet amyloid and type 2 diabetes mellitus", New England J. Med., 343(6), 411-419. https://doi.org/10.1056/NEJM200008103430607
  15. Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: Visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  16. Keten, S., Xu, Z., Ihle, B. and Buehler, M.J. (2010), "Nanoconfinement controls stiffness, strength, and mechanical toughness of ${\beta}$-sheet crystals in slik", Nat. Mater., 9(4), 359-367. https://doi.org/10.1038/nmat2704
  17. Knowles, T.P., Fitzpatrick, A.W., Meehan, S., Mott, H.R., Vendruscolo, M., Dobson, C.M. and Welland, M.E. (2007), "Role of intermolecular forces in defining material properties of protein nanofibrils", Science, 318(5858), 1900-1903. https://doi.org/10.1126/science.1150057
  18. Knowles, T.P.J. and Buehler, M.J. (2011), "Nanomechanics of functional and pathological amyloid materials", Nat. Nanotech., 6(8), 469-479. https://doi.org/10.1038/nnano.2011.102
  19. Knowles, T.P.J., Oppenheim, T.W., Buell, A.K., Chirgadze, D.Y. and Welland, M.E. (2010), "Nanostructured films from hierarchical self-assembly of amyloidogenic proteins", Nat. Nanotech., 5(3), 204-207. https://doi.org/10.1038/nnano.2010.26
  20. Li, C., Adamcik, J. and Mezzenga, R. (2012), "Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties", Nat. Nanotech., 7(7), 421-427. https://doi.org/10.1038/nnano.2012.62
  21. Ling, S., Li, C., Adamcik, J., Shao, Z., Chen, X. and Mezzenga, R. (2014), "Modulating materials by orthogonally oriented ${\beta}$-strands: Composites of amyloid and silk fibroin fibrils", Adv. Mater., 26(26), 4569-4574. https://doi.org/10.1002/adma.201400730
  22. Lu, H.B., Isralewitz, B., Krammer, A., Vogel, V. and Schulten, K. (1998), "Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation", Biophys. J., 75(2), 662-671. https://doi.org/10.1016/S0006-3495(98)77556-3
  23. Lu, H. and Schulten, K. (1999), "Steered molecular dynamics simulations of force-induced protein domain unfolding", Proteins: Struct. Funct. Bioinfo., 35(4), 453-463. https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4<453::AID-PROT9>3.0.CO;2-M
  24. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. and Karplus, M. (1998), "All-atom empirical potential for molecular modeling and dynamics studies of proteins", J. Phys. Chem. B., 102(18), 3586-3616. https://doi.org/10.1021/jp973084f
  25. Muller, D.J. and Dufrene, Y.F. (2008), "Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology", Nat. Nanotech., 3(5), 261-269. https://doi.org/10.1038/nnano.2008.100
  26. Nielsen, J.T., Bjerring, M., Jeppesen, M.D., Pedersen, R.O., Pedersen, J.M., Hein, K.L., Vosegaard, T., Skrypstrup, T., Otzen, D.E. and Nielsen, N.C. (2009), "Unique identification of supramolecular structures in amyloid firbils by solid-state NMR spectroscopy", Angew. Chem. Int. Ed., 121(12), 2152-2155. https://doi.org/10.1002/ange.200804198
  27. Pampaloni, F., Lattanzi, G., Jonas, A., Surrey, T., Frey, E. and Florin, E.-L. (2006), "Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistent length", Proc. Natl. Acad. Sci. USA, 103(27), 10248-10253. https://doi.org/10.1073/pnas.0603931103
  28. Paparcone, R. and Buehler, M.J. (2011), "Failure of A${\beta}$(1-40) amyloid fibrils under tensile loading", Biomaterials, 32(13), 3367-3373. https://doi.org/10.1016/j.biomaterials.2010.11.066
  29. Pepys, M.B. (2006), "Amyloidosis", Annu. Rev. Med., 57, 223-241. https://doi.org/10.1146/annurev.med.57.121304.131243
  30. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L. and Schulten, K. (2005), "Scalable molecular dynamics with NAMD", J. Comput. Chem., 26(16), 1781-1802. https://doi.org/10.1002/jcc.20289
  31. Silveira, J.R., Raymond, G.J., Hughson, A.G., Race, R.E., Sim, V.L., Hayes, S.F. and Caughey, B. (2005), "The most infectious prion protein particles", Nature, 437(7056), 257-261. https://doi.org/10.1038/nature03989
  32. Smith, J.F., Knowles, T.P., Dobson, C.M. MacPhee, C.E. and Welland, M.E. (2006), "Characterization of the nanoscale properties of individual amyloid fibrils", Proc. Natl. Acad. Sci. USA, 103(43), 15806-15811. https://doi.org/10.1073/pnas.0604035103
  33. Solar, M. and Buehler, M.J. (2012a), "Comparative analysis of nanomechanics of protein filaments under lateral loading", Nanoscale, 4(4), 1177-1183. https://doi.org/10.1039/C1NR11260K
  34. Solar, M.I. and Buehler, M.J. (2012b), "Composite materials: Taking a leaf from nature's book", Nat. Nanotechnology, 7(7), 417-419. https://doi.org/10.1038/nnano.2012.86
  35. Solar, M. and Buehler, M.J. (2014), "Tensile deformation and failure of amyloid and amyloid-like protein fibrils", Nanotechnology, 25(10), 105703. https://doi.org/10.1088/0957-4484/25/10/105703
  36. Sotomayor, M. and Schulten, K. (2007), "Single-molecule experiments in vitro and in silico", Science, 316(5828), 1144-1148. https://doi.org/10.1126/science.1137591
  37. Straub, J.E. and Thirumalai, D. (2011), "Towards a molecular theory of early and late events in monomer to amyloid fibril formation", Annu. Rev. Phys. Chem., 62, 437-463. https://doi.org/10.1146/annurev-physchem-032210-103526
  38. Tanaka, M., Collins, S.R., Toyama, B.H. and Weissman, J.S. (2006), "The physical basis of how prion conformations determine strain phenotypes", Nature, 442(7102), 585-589. https://doi.org/10.1038/nature04922
  39. Xu, Z., Paparcone, R. and Buehler, M.J. (2010), "Alzheimer's A${\beta}$(1-40) amyloid fibrils feature sizedependent mechanical properties", Biophys. J., 98(10), 2053-2062. https://doi.org/10.1016/j.bpj.2009.12.4317
  40. Yoon, G., Kim, Y.K., Eom, K. and Na, S. (2013), "Relationship between disease-specific structures of amyloid fibrils and their mechanical properties", Appl. Phys. Lett., 102(1), 011914. https://doi.org/10.1063/1.4774296
  41. Yoon, G., Kwak, J., Kim, J.I., Na, S. and Eom, K. (2011), "Mechanical characterization of amyloid fibrils using coarse-grained normal mode analysis", Adv. Funct. Mater., 21(18), 3454-3463. https://doi.org/10.1002/adfm.201002493
  42. Yoon, G., Lee, M., Kim, J.I., Na, S. and Eom, K. (2014), "Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils", PLOS ONE, 9, e88502. https://doi.org/10.1371/journal.pone.0088502

Cited by

  1. Nanomechanical Characterization of Amyloid Fibrils Using Single-Molecule Experiments and Computational Simulations vol.2016, 2016, https://doi.org/10.1155/2016/5873695
  2. Metal ions affect the formation and stability of amyloid β aggregates at multiple length scales vol.20, pp.13, 2018, https://doi.org/10.1039/C7CP05072K

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Institute of Science and Technology Information (KISTI)