Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements

Willberg, Christian

  • Received : 2015.08.13
  • Accepted : 2015.11.27
  • Published : 2016.01.25


In this paper an electromechanically coupled isogeometric finite element is utilized to analyse Lamb wave excitation with piezoceramic actuators. An effective actuator design reduces the energy needed for Lamb wave excitation, which is beneficial if a structural health monitoring system should be applied for a structure. For a better understanding of the actuator behavior the piezoeceramics are studied both free and bonded at a structure. The numerical part of the analysis is performed utilizing isogeometric finite elements. To obtain the optimal performance for the numerical analysis the effect of k-refinement of the isogeometric element with respect to the convergence is studied and discussed. The optimal numerical setup with the best convergence rate is proposed and is validated with free piezoeceramic actuators. The validated model is then utilized to study the impact of actuator shape and adhesive bondline effect to the wave amplitude. The study shows that simplified analytical equations do not predict the optimal excitation frequencies for all piezoceramic designs accurately.


FEM;isogeometric analysis;piezoelectric;smart structures


  1. Adam, C., Bouabdallah, S., Zarroug, M. and Maitournam, H. (2015), "Stable time step estimates for NURBS-based explicit dynamics", Comput. Meth. Appl. Mech. Eng., 295(581-605), doi:
  2. Ahmad, Z.A.B. and Gabbert, U. (2012), "Simulation of Lamb wave reflections at plate edges using the semianalytical finite element method", Ultrasonics, 52(7), 815-820.
  3. Ahmad, Z.A.B. (2011), "Numerical Simulations of Lamb waves in plates using a semi-analytical finite element method", Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Fortschritt-Berichte VDI Reihe 20, Nr. 437, Dusseldorf: VDI Verlag, ISBN:978-3-18-343720-7.
  4. Alleyne, D. and Cawley, P. (1991), "A two-dimensional Fourier transform method for the measurement of propagating multimode signals", J. Acoust. Soc. Am., 89(3), 1159-1168.
  5. Bazilevs, Y. (2006), "Isogeometric analysis of turbulence and fluid-structure interaction", Ph.D. thesis, The University of Texas at Austin.
  6. Boller, C., Chang, F.-K. and Fijino, Y. (2009), Encyclopedia of Structural Health Monitoring, John Wiley & Sons, ISBN-10: 0470058226.
  7. Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009), Isogeometric analysis: Toward integration of CAD and FEA, John Wiley & Sons, ISBN-10: 0470748737.
  8. Crawley, E.F. and de Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25(10), 1373-1385.
  9. de Boor, C. (1972), "On calculating with B-splines", J. Approx. Theory, 6(1), 50-62.
  10. Duczek, S. (2014), "Higher order finite elements and the fictitious domain concept for wave propagation analysis", Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Fortschritt-Berichte VDI Reihe 20, Nr. 458, Dusseldorf: VDI Verlag, ISBN: 978-3-18-345820-2.
  11. Evans, J.A., Bazilevs, Y., Babuska, I. and Hughes, T.J.R. (2009), "n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method", Comput. Meth. Appl. Mech. Eng., 198(21), 1726-1741.
  12. Giurgiutiu, V. (2008), Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Academic Press (Elsevier), ISBN-13: 978-0-12-088760-6.
  13. Ha, S. (2009), "Modeling Lamb wave propagation induced by adhesively bonded PZTs on thin plates", Ph.D. thesis, Stanford University, California, USA.
  14. Ha, S. (2010), "Adhesive interface layer effects in PZT-induced Lamb wave propagation", Smart Mater. Struct., 19(2), 025006.
  15. Huang, C.-H., Lin, Y.-C. and Ma, C.-C. (2004), "Theoretical analysis and experimental measurement of resonant vibration of piezoceramic circular plates", IEEE Trans. Ultrasonic., Ferroelect., Freq. Control, 51(1), 12-24.
  16. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39), 4135-4195.
  17. Ikeda, T. (1996), Fundamentals of piezoelectricity, Oxford science publications, Oxford University Press, ISBN 9780198564607.
  18. Kessler, S., Spearing, M. and Atallab, M. (2002), "In-situ damage detection of composites structures using Lamb wave methods", In Proceedings of the First European Workshop on Structural Health Monitoring, 10-12 July 2002 Paris France.
  19. Marinkovic, D., Koppe, H. and Gabbert, U. (2006), "Numerically efficient finite element formulation for modeling active composite laminates", Mech. Adv. Mater. Struct., 13(5), 379-392.
  20. Mohamed, R., Demer, D.L. and Masson, P. (2011), "A parametric study of piezoelectric thickness effect on the generation of fundamental Lamb modes", Hlth. Monit. Struct. Biol. Syst., Proceedings of SPIE Vol. 7984.
  21. Mook, G., Pohl, J. and Michel, F. (2003), "Non-destructive characterization of smart CFRP structures", Smart Mater. Struct., 12(6), 997-1004.
  22. PI Ceramic GmbH, Lederhose - GERMANY (2011),
  23. Piegl, L. and Tiller, W. (1995), The NURBS Book, Springer, ISBN: 3-540-55069-0.
  24. Pohl, J., Willberg, C., Gabbert, U. and Mook, G. (2012), "Theoretical analysis and experimental determination of the dynamic behaviour of piezoceramic actuators for SHM", Exp. Mech., 51(4), 429-438.
  25. Samal, M.K., Seshu, P., Parashar, S., von Wagner, U., Hagedorn, P., Dutta, B.K. and Kushwaha, H.S. (2005), "A finite element model for nonlinear behaviour of piezoceramics under weak electric fields", Finit. Element. Anal. Des., 41(15), 1464-1480.
  26. Schmicker, D., Duczek, S., Liefold, S. and Gabbert, U. (2014), "Wave propagation analysis using high-order finite element methods: Spurious oscillations excited by internal element eigenfrequencies", Technische Mechanik, 34(2), 51-71.
  27. Sirohi, J. and Chopra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intellig. Mater. Syst. Struct., 11(4), 246-257.
  28. Sohn, H. and Lee, S.J. (2010), "Lamb wave tuning curve calibration for surface-bonded piezoelectric Transducers", Smart Mater. Struct., 19(1), 015007.
  29. Su, Z. and Ye, L. (2009), Identification of Damage Using Lamb Waves: From Fundamentals to Applications, Springer, ISBN: 978-1-84882-783-7.
  30. Su, Z., Ye, L. and Lu, Y. (2006), "Guided Lamb waves for identification of damage in composite structures: A review", J. Sound Vib., 295(3), 753-780.
  31. Willberg, C. (2013), "Development of a new isogeometric finite element and its application for Lamb wave based structural health", Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Fortschritt-Berichte VDI Reihe 20, Nr. 446, Dusseldorf: VDI Verlag, ISBN: 978-3-18-344620-9.
  32. Willberg, C. and Gabbert, U. (2012), "Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications", Acta Mechanica, 223(8), 1837-1850.
  33. Willberg, C., Vivar-Perez, J.M., Ahmad, Z. and Gabbert, U. (2009), "Simulation of piezoelectric induced Lamb wave motion in plates", In Proceedings of the 7th International Workshop on Structural Health Monitoring 2009: From System Integration to Autonomous Systems, 2299-2307.
  34. Willberg, C., Duczek, S., Vivar-Perez, J.M., Schmicker, D. and Gabbert, U. (2012a), "Comparison of different higher order finite element schemes for the simulation of Lamb waves", Comput. Meth. Appl. Mech. Eng., 241, 246-261.
  35. Willberg, C., Koch, S., Mook, G., Gabbert, U. and Pohl, J. (2012b), "Continuous mode conversion of Lamb waves in CFRP plates", Smart Mater. Struct., 21(7), 1-9.
  36. Willberg, C., Duczek, S. and Gabbert, U. (2013), "Increasing the scanning range of Lamb wave based SHM systems by optimizing the actuator sensor design", CEAS Aeronaut. J., 4(1), 87-98.
  37. Willberg, C., Duczek, S., Vivar-Perez, J.M. and Ahmad, Z.A.B. (2015), "Simulation methods for guided wave-based structural health monitoring: A review", Appl. Mech. Rev., 67(1), 010803.
  38. Zienkiewicz, O.C. and Taylor, R. (2000), The Finite Element Method, Volume 1: Basis, Butterworth- Heinemann, ISBN: 0 7506 5049 4.

Cited by

  1. Numerical Solution of a Wave Propagation Problem Along Plate Structures Based on the Isogeometric Approach 2017,