Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 53 Issue 1
- /
- Pages.1-20
- /
- 2016
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON NONLINEAR POLYNOMIAL SELECTION AND GEOMETRIC PROGRESSION (MOD N) FOR NUMBER FIELD SIEVE
- Cho, Gook Hwa (Institute for Mathematical Sciences Ewha Womans University) ;
- Koo, Namhun (Division of Mathematical Models National Institute for Mathematical Sciences) ;
- Kwon, Soonhak (Department of Mathematics Sungkyunkwan University)
- Received : 2013.08.27
- Published : 2016.01.31
Abstract
The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery's method [12] using geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We also introduce GP of length d + k with
Keywords
polynomial selection;number field sieve;geometric progression;LLL algorithm
File
Acknowledgement
Grant : BK21플러스
Supported by : 성균관대학교
References
- S. Bai, R. P. Brent, and E. Thome, Root optimization of polynomials in the number field sieve, Math. Comp. 84 (2015), no. 295, 2447-2457. https://doi.org/10.1090/S0025-5718-2015-02926-3
- K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik, A Kilobit special number field sieve factorization, Advances in cryptology-ASIACRYPT 2007, pp. 1-12, Lecture Notes in Comput. Sci., 4833, Springer, Berlin, 2007.
- S. Bai, C. Bouvier, A. Kruppa, and P. Zimmermann, Better Polynomials for GNFS, To appear in Mathematics of Computation.
- N. Coxon, On nonlinear polynomial selection for the number field sieve, preprint, 2011.
- N. Coxon, Montgomery's method of polynomial selection for the number field sieve, preprent, 2014.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective 2ed, Springer, 2005.
- J. Gower, Rotations and translations of number field sieve polynomials, Proceeding of Asiacrypt 2003, LNCS 2894, pp. 302-310, 2003.
- T. Kleinjung, On polynomial selection for the general number field sieve, Math. Comp. 75 (2006), no. 256, 2037-2047. https://doi.org/10.1090/S0025-5718-06-01870-9
- T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thome, J. Bos, P. Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. te Riele, A. Timofeev, and P. Zimmermann, Factorization of a 768-bit RSA modulus, Advances in cryptology-EUROCRYPTO 2010, pp. 333-350, Lecture Notes in Comput. Sci., 6223, Springer, Berlin, 2010.
- A. K. Lenstra and H. W. Lenstra, Jr, The Development of the Number Field Sieve, LNM 1554, Springer, 1993.
- A. K. Lenstra, H. W. Lenstra, Jr, and L. Lovasz, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 513-534.
- P. Montgomery, Small geometric progressions modulo n, Unpublished note of 2 pages, December 1993, revised 1995 and 2005.
- B. Murphy, Polynomial Selection for the Number Field Sieve Integer Factorisation Al-gorithm, PhD thesis, Australian National University, July 1999.
- P. Nguyen and J. Stern, Merkle-Hellman revisited: A cryptoanalysis of the Qu-Vanstone cryptosystem based on group factorizations, Advances in cryptology-EUROCRYPTO '97 (Santa Barbara, CA, 1997), pp. 198-212, Lecture Notes in Comput. Sci., 1294, Springer, Berlin, 1997.
- T. Prest and P. Zimmermann, Non-linear polynomial selection for the number field sieve, J. Symbolic Comput. 47 (2012), no. 4, 401-409. https://doi.org/10.1016/j.jsc.2011.09.004
- RSA challenge; available at http://www.rsa.com/rsalabs/html/challenges.html=
- R. S. Williams, Cubic Polynomials in the Number Field Sieve, MSc Thesis, Texas Tech University, 2010.