DOI QR코드

DOI QR Code

VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS

  • Xu, Na (School of Mathematical Sciences Xiamen University) ;
  • Zhong, Chun-Ping (School of Mathematical Sciences Xiamen University)
  • Received : 2014.10.26
  • Published : 2016.01.31

Abstract

For a transcendental entire function f(z) with zero order, the purpose of this article is to study the value distributions of q-difference polynomial $f(qz)-a(f(z))^n$ and $f(q_1z)f(q_2z){\cdots}f(q_mz)-a(f(z))^n$. The property of entire solution of a certain q-difference equation is also considered.

Keywords

q-difference polynomial;value distribution;entire function

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars

References

  1. R. B. Ash, Complex Variables, Academic Press, New York-London, 1971.
  2. D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A. 137 (2007), no. 3, 457-474. https://doi.org/10.1017/S0308210506000102
  3. Z. X. Chen, Value distribution of products of meromorphic functions and their differences, Taiwanese J. Math. 15 (2011), no. 4, 1411-1421. https://doi.org/10.11650/twjm/1500406353
  4. Z. X. Chen, Zeros of entire solutions to complex linear difference equations, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 3, 1141-1148.
  5. Z. X. Chen, Z. B. Huang, and X. M. Zheng, On properties of difference polynomials, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 627-633.
  6. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic f(z + $\eta$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. https://doi.org/10.1007/s11139-007-9101-1
  7. R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
  8. R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
  9. W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70 (1959), 9-42. https://doi.org/10.2307/1969890
  10. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  11. I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.
  12. I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151. https://doi.org/10.3792/pjaa.83.148
  13. K. Liu, X. L. Liu, and T. B. Cao, Uniqueness and zeros of q-shift difference polynomials, Proc. Indian Acad. Sci. Math. Sci. 121 (2011), no. 3, 301-310. https://doi.org/10.1007/s12044-011-0038-3
  14. K. Liu and X. G. Qi, Meromorphic solutions of q-shift difference equations, Ann. Polon. Math. 101 (2011), no. 3, 215-225. https://doi.org/10.4064/ap101-3-2
  15. K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270-278. https://doi.org/10.1007/s00013-009-2895-x
  16. J. F. Xu and X. B. Zhang, The zeros of q-difference polynomials of meromorphic functions, Adv. Difference Equ. 2012 (2012), 200, 10 pp. https://doi.org/10.1186/1687-1847-2012-10
  17. L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
  18. H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press 1995.
  19. J. L. Zhang and R. J. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. https://doi.org/10.1016/j.jmaa.2010.03.038