DOI QRμ½”λ“œ

DOI QR Code

ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS

  • Guo, Wenbin (Department of Mathematics University of Science and Technology of China) ;
  • Yu, Haifeng (Department of Mathematics and Physics Hefei University) ;
  • Zhang, Li (Department of Mathematics University of Science and Technology of China)
  • Received : 2014.12.29
  • Published : 2016.01.31

Abstract

A chief factor H/K of G is called F-central in G provided $(H/K){\rtimes}(G/C_G(H/K)){\in}{\mathfrak{F}}$. A normal subgroup N of G is said to be ${\pi}{\mathfrak{F}}$-hypercentral in G if either N = 1 or $N{\neq}1$ and every chief factor of G below N of order divisible by at least one prime in ${\pi}$ is $\mathfrak{F}$-central in G. The symbol $Z_{{\pi}{\mathfrak{F}}}(G)$ denotes the ${\pi}{\mathfrak{F}}$-hypercentre of G, that is, the product of all the normal ${\pi}{\mathfrak{F}}$-hypercentral subgroups of G. We say that a subgroup H of G is ${\pi}{\mathfrak{F}}$-embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G and $(H{\cap}T)H_G/H_G{\leq}Z_{{\pi}{\mathfrak{F}}}(G/H_G)$, where $H_G$ is the maximal normal subgroup of G contained in H. In this paper, we use the ${\pi}{\mathfrak{F}}$-embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of p-nilpotency and supersolvability of a group.

Keywords

${\pi}{\mathfrak{F}}$-hypercenter;${\pi}{\mathfrak{F}}$-embedded subgroup;Sylow subgroup;n-maximal subgroup

Acknowledgement

Supported by : NNSF

References

  1. A. Ballester-Bolinches, L. M. Ezquerro, and A. N. Skiba, On subgroups of hypercentral type of finite groups, Israel J. Math. 199 (2014), no. 1, 259-265. https://doi.org/10.1007/s11856-013-0030-y
  2. X. Chen and W. Guo, On weakly S-embedded and weakly $\tau$-embedded subgroups, Sib. Math. J. 54 (2013), no. 5, 931-945. https://doi.org/10.1134/S0037446613050170
  3. X. Chen and W. Guo, On the ${\pi}{\Im}$-norm and the ${\eta}-{\Im}$-norm of a finite group, J. Algebra 405 (2014), 213-231. https://doi.org/10.1016/j.jalgebra.2014.01.042
  4. K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
  5. L. M. Ezquerro and X. Soler-Escriva, Some permutability properties related to $\Im$-hypercentrally embedded subgroups of finite groups, J. Algebra 264 (2003), no. 1, 279-295. https://doi.org/10.1016/S0021-8693(03)00117-0
  6. X. Feng and W. Guo, On Fh-normal subgroups of finite groups, Front. Math. China 5 (2010), no. 4, 653-664. https://doi.org/10.1007/s11464-010-0062-0
  7. W. Guo, The Theory of Classes of Groups, Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing, 2000.
  8. W. Guo, On $\Im$-supplemented subgroups of finite groups, Manuscripta Math. 127 (2008), no. 2, 139-150. https://doi.org/10.1007/s00229-008-0194-7
  9. W. Guo and S. Chen, Weakly c-permutable subgroups of finite groups, J. Algebra 324 (2010), no. 9, 2369-2381. https://doi.org/10.1016/j.jalgebra.2010.07.018
  10. W. Guo and A. N. Skiba, On factorizations of finite groups with $\Im$-hypercentral intersections of the factors, J. Group Theory 14 (2011), no. 5, 695-708.
  11. W. Guo and A. N. Skiba, On the intersection of the F-maximal subgroups and the generalized $\Im$-hypercentre of a finite group, J. Algebra 366 (2012), 112-125. https://doi.org/10.1016/j.jalgebra.2012.06.001
  12. W. Guo, F. Xie, and B. Li, Some open questions in the theory of generalized permutable subgroups, Sci. China Math. 52 (2009), no. 10, 2132-2144. https://doi.org/10.1007/s11425-009-0045-3
  13. X. Guo and K. P. Shum, On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups, Arch. Math. (Basel) 80 (2003), no. 6, 561-569. https://doi.org/10.1007/s00013-003-0810-4
  14. J. Huang, On ${\Im}_s$-quasinormal subgroups of finite groups, Comm. Algebra 38 (2010), no. 11, 4063-4076. https://doi.org/10.1080/00927870903291090
  15. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
  16. D. J. S. Robinson, A Course in the Theorey of Groups, Springer-Verlag, New York, 1982.
  17. P. Schmid, Subgroups permutable [commuting] with all Sylow subgroups, J. Algebra 207 (1998), no. 1, 285-293. https://doi.org/10.1006/jabr.1998.7429
  18. L. A. Shemetkov and A. N. Skiba, On the ${\chi}{\Phi}$-hypercentre of finite groups, J. Algebra 322 (2009), no. 6, 2106-2117. https://doi.org/10.1016/j.jalgebra.2009.03.029
  19. A. N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory 13 (2010), no. 6, 841-850.
  20. A. N. Skiba, On the ${\Im}$-hypercentre and the intersection of all F-maximal subgroups of a finite group, J. Pure Appl. Algebra 216 (2012), no. 4, 789-799. https://doi.org/10.1016/j.jpaa.2011.10.006
  21. S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35 (1980), no. 3, 210-214. https://doi.org/10.1007/BF02761191
  22. Y.Wang, c-normality of groups and its properties, J. Algebra 180 (1996), no. 3, 945-965.
  23. X. Yi, L. Miao, H. Zhang, and W. Guo, Finite groups with some F-supplemented subgroups, J. Algebra Appl. 9 (2010), no. 5, 669-685. https://doi.org/10.1142/S0219498810004063