DOI QR코드

DOI QR Code

ON THE STRUCTURE OF GRADED LIE TRIPLE SYSTEMS

  • Martin, Antonio Jesus Calderon (Departamento de Matematicas Facultad de Ciencias Universidad de Cadiz)
  • Received : 2015.01.08
  • Published : 2016.01.31

Abstract

We study the structure of an arbitrary graded Lie triple system $\mathfrak{T}$ with restrictions neither on the dimension nor the base field. We show that $\mathfrak{T}$ is of the form $\mathfrak{T}=U+\sum_{j}I_j$ with U a linear subspace of the 1-homogeneous component $\mathfrak{T}_1$ and any $I_j$ a well described graded ideal of $\mathfrak{T}$, satisfying $[I_j,\mathfrak{T},I_k]=0$ if $j{\neq}k$. Under mild conditions, the simplicity of $\mathfrak{T}$ is characterized and it is shown that an arbitrary graded Lie triple system $\mathfrak{T}$ is the direct sum of the family of its minimal graded ideals, each one being a simple graded Lie triple system.

Keywords

Lie triple system;grading;simple component;structure theory

Acknowledgement

Grant : Teoria de Lie y Teoria de Espacios de Banach

Supported by : PAI, Spanish Ministerio de Educacion

References

  1. A. Ebadian, N. Ghobadipour, and H. Baghban, Stability of bi-$\theta$-derivations on JB*-triples, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 7, 1250051, 12 pp.
  2. A. Elduque and M. Kochetov, Gradings on the exceptional Lie algebras $F_4$ and $G_2$ revisited, Rev. Mat. Iberoam. 28 (2012), no. 3, 775-815.
  3. H. Grosse and R. Wulkenhaar, 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory, J. Geom. Phys. 62 (2012), no. 7, 1583-1599. https://doi.org/10.1016/j.geomphys.2012.03.005
  4. U. Gunther and S. Kuzhel, PT-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras, J. Phys. A: Math. Theor. 43 (2010), 392002, 10 pp.
  5. M. Havlicek, J. Patera, E. Pelatonova, and J. Tolar, On fine gradings and their symmetries , Czechoslovak J. Phys. 51 (2001), 383-391. https://doi.org/10.1023/A:1017501925328
  6. K. Iohara and Y. Koga, Note on spin modules associated to $\mathbb{Z}$-graded Lie superalgebras, J. Math. Phys. 50 (2009), no. 10, 103508, 9 pp. https://doi.org/10.1063/1.3220609
  7. P. Jordan, Uber Verallgemeinerungsm oglichkeiten des Formalismus der Quantenmechanik , Nachr. Ges. Wiss. Gottingen (1933), 209-214.
  8. J. Kaad and R. Senior, A twisted spectral triple for quantum SU(2), J. Geom. Phys. 62 (2012), no. 4, 731-739. https://doi.org/10.1016/j.geomphys.2011.12.019
  9. A. K. Kwasniewski, On maximally graded algebras and Walsh functions, Rep. Math. Phys. 26 (1988), no. 1, 137-142. https://doi.org/10.1016/0034-4877(88)90008-0
  10. J. Palmkvist, Three-algebras, triple systems and 3-graded Lie superalgebras, J. Phys. A 43 (2010), no. 1, 015205, 15 pp.
  11. E. Poletaeva, Embedding of the Lie superalgebra D(2, 1; ${\alpha}$) into the Lie superalgebra of pseudodifferential symbols on $S^{1{\mid}2}$, J. Math. Phys. 48 (2007), no. 10, 103504, 17 pp.
  12. J. R. Schue, Cartan decompositions for L*-algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349.
  13. N. Stumme, The structure of locally finite split Lie algebras, J. Algebra 220 (1999), no. 2, 664-693. https://doi.org/10.1006/jabr.1999.7978
  14. A. Verbovetsky, Lagrangian formalism over graded algebras, J. Geom. Phys. 18 (1996), no. 3, 195-214. https://doi.org/10.1016/0393-0440(95)00017-8
  15. G. Benkart, A. Elduque, and G. Martinez, A(n, n)-graded Lie superalgebras, J. Reine Angew. Math. 573 (2004), 139-156.
  16. M. Boussahel and N. Mebarki, Graded Lie algebra and the $U(3)_L{\times}U(1)_N$ gauge model, Internat. J. Modern Phys. A 26 (2011), no. 5, 873-909. https://doi.org/10.1142/S0217751X11051305
  17. C. Boyallian and V. Meinardi, Quasifinite representations of the Lie superalgebra of quantum pseudodifferential operators, J. Math. Phys. 49 (2008), no. 2, 023505, 13 pp.
  18. A. J. Bruce, Tulczyjew triples and higher Poisson/Schouten structures on Lie algebroids, Rep. Math. Phys. 66 (2010), no. 2, 251-276. https://doi.org/10.1016/S0034-4877(10)80030-8
  19. A. J. Calderon Martin, On split Lie algebras with symmetric root systems, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 3, 351-356. https://doi.org/10.1007/s12044-008-0027-3
  20. A. J. Calderon Martin On split Lie triple systems, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 165-177. https://doi.org/10.1007/s12044-009-0017-0
  21. A. J. Calderon Martin, On the structure of graded Lie algebras, J. Math. Phys. 50 (2009), no. 10, 103513, 8 pp.
  22. A. J. Calderon, C. Draper, and C. Martin, Gradings on the real forms of the Albert algebra, of $g_2$, and of $f_4$, J. Math. Phys. 51 (2010), no. 5, 053516, 21 pp.
  23. A. J. Calderon, C. Draper, and C. Martin, Gradings on Lie triple systems related to exceptional Lie algebras, J. Pure Appl. Algebra 217 (2013), no. 4, 672-688. https://doi.org/10.1016/j.jpaa.2012.08.007
  24. A. J. Calderon Martin and M. Forero Piulestan, On split Lie triple systems II, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 2, 185-198. https://doi.org/10.1007/s12044-010-0021-4
  25. A. J. Calderon Martin and M. Forero Piulestan, Split 3-Lie algebras, J. Math. Phys. 52 (2011), no. 12, 123503, 16 pp.
  26. A. J. Calderon and J. M. Sanchez, On the structure of graded Lie superalgebras, Modern Phys. Lett. A 27 (2012), no. 25, 1250142, 18 pp.
  27. Y. A. Bahturin and M. V. Zaicev, Group gradings on simple Lie algebras of type A, J. Lie Theory 16 (2006), no. 4, 719-742.
  28. V. K. Balachandran, Real L*-algebras, Indian J. Pure Appl. Math. 3 (1972), no. 6, 1224-1246.
  29. A. J. Calderon and J. M. Sanchez, Split Leibniz superalgebras, Linear Algebra Appl. 438 (2013), no. 12, 4709-4725. https://doi.org/10.1016/j.laa.2013.01.017
  30. A. J. Calderon and J. M. Sanchez, On the structure of graded Leibniz algebras, Algebra Colloquium. In press.
  31. M. Chaves and D. Singleton, Phantom energy from graded algebras, Modern Phys. Lett. A 22 (2007), no. 1, 29-40.
  32. R. Coquereaux, G. Esposito-Farese, and F. Scheck, Noncommutative geometry and graded algebras in electroweak interactions, Internat. J. Modern Phys. A 7 (1992), no. 26, 6555-6593. https://doi.org/10.1142/S0217751X9200301X
  33. C. Draper, C. Martin, and A. Elduque, Fine gradings on exceptional simple Lie superalgebras , Internat. J. Math. 22 (2011), no. 12, 1823-1855. https://doi.org/10.1142/S0129167X11007392
  34. C. Draper and A. Viruel, Group gradings on o(8, $\mathbb{C}$), Rep. Math. Phys. 61 (2008), no. 2, 265-280. https://doi.org/10.1016/S0034-4877(08)80015-8

Cited by

  1. On the structure of graded Leibniz triple systems vol.496, 2016, https://doi.org/10.1016/j.laa.2016.01.043