• Fu, Yu (School of Mathematics Dongbei University of Finance and Economics) ;
  • Yang, Dan (Normal College Shenyang University)
  • Received : 2015.01.29
  • Published : 2016.01.31


A generalized constant ratio surface (GCR surface) is defined by the property that the tangential component of the position vector is a principal direction at each point on the surface, see [8] for details. In this paper, by solving some differential equations, a complete classification of Lorentz GCR surfaces in the three-dimensional Minkowski space is presented. Moreover, it turns out that a flat Lorentz GCR surface is an open part of a cylinder, apart from a plane and a CMC Lorentz GCR surface is a surface of revolution.


surfaces of revolution;GCR surfaces;Lorentz surfaces;constant slope surfaces;constant angle surfaces


  1. K. N. Boyadzhiev, Equiangular surfaces, self-similar surfaces, and the geometry of seashells, Coll. Math. J. 38 (2007), no. 4, 265-271.
  2. B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  3. B. Y. Chen, Constant-ratio hypersurfaces, Soochow J. Math. 27 (2001), no. 4, 353-362.
  4. F. Dillen, J. Fastenakels, and J. Van der Veken, Surfaces in $\mathbb{S}^2{\times}\mathbb{R}$ with a canonical principal dirention, Ann. Global Anal. Geom. 35 (2009), no. 4, 381-396.
  5. F. Dillen, J. Fastenakels, J. Van der Veken, and L. Vrancken, Constant angle surfaces in $\mathbb{S}^2{\times}\mathbb{R}$, Monatsh. Math. 152 (2007), no. 2, 89-96.
  6. F. Dillen and M. I. Munteanu, Constant angle surfaces in $\mathbb{H}^2{\times}\mathbb{R}$, Bull. Braz. Math. Soc. 40 (2009), no. 1, 85-97.
  7. F. Dillen, M. I. Munteanu, and A. I. Nistor, Canonical coordinates and principal directions for surfaces in $\mathbb{H}^2{\times}\mathbb{R}$, Taiwanese J. Math. 15 (2011), no. 5, 2265-2289.
  8. Y. Fu and M. I. Munteanu, Generalized constant ratio surfaces in $\mathbb{E}^3$, Bull. Braz. Math. Soc. New Series 45 (2014), no. 1, 1-18.
  9. Y. Fu and A. I. Nistor, Constant angle property and canonical principal directions for surfaces in ${\mathbb{M}^2(c)}{\times}{\mathbb{R}_1}$, Mediter. J. Math. 10 (2013), no. 2, 1035-1049.
  10. Y. Fu and X. Wang, Classification of timelike constant slope surfaces in 3-dimensional Minkowski space, Results. Math. 63 (2012), no. 3-4, 1095-1108.
  11. Y. Fu and D. Yang, On constant slope spacelike surfaces in 3-dimensional Minkowski space, J. Math. Anal. Appl. 385 (2012), no. 1, 208-220.
  12. E. Garnica, O. Palmas, and G. Ruiz-Hernandez, Hypersurfaces with a canonical principal direction, Differential Geom. Appl. 30 (2012), no. 5, 382-391.
  13. S. Haesen, A. I. Nistor, and L. Verstraelen, On growth and form and geometry. I, Kragujevac J. Math. 36 (2012), no. 1, 5-23.
  14. J. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tohoku Math. J. (2) 32 (1984), no. 3, 427-437.
  15. M. I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51 (2010), no. 7, 073507, 9 pp.
  16. M. I. Munteanu and A. I. Nistor, A new approach on constant angle surfaces in $\mathbb{E}^3$, Turkish J. Math. 33 (2009), no. 2, 169-178.
  17. M. I. Munteanu and A. I. Nistor, Complete classification of surfaces with a canonical principal direction in the Euclidean space $\mathbb{E}^3$, Cent. Eur. J. Math. 9 (2011), no. 2, 378-389.
  18. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1982.
  19. A. I. Nistor, A note on spacelike surfaces in Minkowski 3-space, Filomat 27 (2013), no. 5, 843-849.