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ON A COMPUTATION OF PLURIGENUS OF
A CANONICAL THREEFOLD

DoNG-KWAN SHIN

ABSTRACT. For a canonical threefold X, it is known that p, does not
vanish for a sufficiently large n, where p, = h?(X, Ox(nKx)). We have
shown that p, does not vanish for at least one n in {6, 8, 10}. Assuming
an additional condition p2 > 1 or p3 > 1, we have shown that p1a > 2
and pn > 2 for n > 14 with one possible exceptional case. We have also
found some inequalities between x(Ox) and K%.

Throughout this paper X is assumed to be a projective threefold with only
canonical singularities and an ample canonical divisor Kx over the complex
number field C, i.e., a canonical threefold.

It is well known that H°(X,Ox(mKx)) does not vanish and generates a
birational map for a sufficiently large m. If there exists a positive integer n
such that h%(X, Ox(nKx)) > 2, then by using Kollar’s technique we can find
the integer m which generates a birational map (see Kollar [4]).

A. R. Fletcher showed h?(X,0x(12Kx)) > 1 and h°(X,Ox(24Kx)) > 2
when x(Ox) = 1 in Fletcher [3]. Shin [6] improved the above results. J. A.
Chen and M. Chen showed that h°(X, Ox(nKx)) > 1 for every integer n > 27
and that h(X,0x(24Kx)) > 2 and h°(X,0x(noKx)) > 2 for some integer
ng < 18 (see Chen and Chen [1, 2]).

Plurigenus p,, of canonical threefolds were extensively studied by J. A. Chen
and M. Chen (see Chen and Chen [1, 2]). They inspect linear combinations of
prn, and baskets of singularities. In this paper, we study also linear combinations
of p,. But our approach is slightly different and includes less complex calcula-
tions. To find special linear combinations of p,,, our strategy is searching linear
combinations which satisfy the following (1) or (2):

(1) linear combinations of p, are non-positive at every point in (0, 3].
(2) linear combinations of p,, can be expressed as pure linear forms a;b+d;r
of singularity type % on some partition of (0, 1],
where a;, d; are integers.
From (1), we may obtain information of p,, in linear combinations.

Received March 5, 2015; Revised May 21, 2015.
2010 Mathematics Subject Classification. 14J17, 14J30.
Key words and phrases. canonical threefold, threefold of general type, plurigenus.

(©2016 Korean Mathematical Society
303



304 DONG-KWAN SHIN

From (2), we may compute p,, using special singularity types.

Finally, with above information we may construct a system of linear equa-
tions of numbers of singularities.

In this paper, we have introduced techniques to compute p,, and shown the
following theorems:

Theorem A (=Theorem 2). p, > 1 for at least one n in {6, 8, 10}.

Theorem B (=Theorem 3). Suppose that po > 1 or ps > 1. Then
(1) p12 > 2.
(2) pn > 2 for n > 14 with a possible exceptional case which must satisfy:
i) p2>1,p3 =ps =p7r =py9 =0 and py5 < 1.
ii) pn > 2 for an even integer n (n > 6).
i) K% < 5x(0x) — £5p2-

Furthermore, we have obtained the following table:

‘ case H P4 ‘ps‘ Ps ‘p7‘ ps ‘ P9 ‘plo ‘ p11 ‘p12 ‘pls ‘pn(zm)‘
pp>1* || >1| 72 [ >2|7|>2(>1|>2|>1|>22|>2| >2
p3 > 1 T =217 =21 > 7 | >21|>2| 7 >2

The symbol ? means that it is not known or can be computed with mild addi-
tional conditions. The symbol * means that there is one possible exceptional
case which is described in Theorem 3.

M. Reid and A. R. Fletcher described the formula for x(Ox(nKx)). Com-
bining the formula for x(Ox (nKx)) with a vanishing theorem, it is possible to
compute h°(X,Ox(nKx)). The formula for y(Ox(nKx)) is as follows:

M= VDB g4 (- 2n)0(0x) + Y 1@,
QeB
where the summation is over a basket B of singularities. Although singularities
in a basket are not necessarily singularities in X, singularities in X make the
contribution as if they were in a basket. For detailed explanations about a
basket of singularities, see Reid [5] or Fletcher [3].
The exact formula for I(Q,n) is described as follows:

1(Q,n) = z_: M,

. 2r
=1

X(Ox (nKx)) =

where @) is a singularity of type %(1, —1,b), r and b are relatively prime, and
ib is the least residue of ib modulo 7.
For the sake of simplicity, denote > 5.5 1(Q,n) by L(n). Switch two sum-
ib(r—ib)
2r

mations in L(n) and denote > p by I;. Then we have

n—1

=Y uem =3 Y B s Sy,

QeB QeB i=1 i=1 QeB
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Let’s denote the singularity type %(1, —1,b) by % unless there is some con-
fusion. Moreover, identify the singularity type % with the rational number %
in the interval (0,1]. By identifying the type % with the rational number % in
(0, 1], our situation is defined more effectively for the computation of L(n).

The following proposition is a standard application of the Kawamata-Vieh-
weg Vanishing Theorem.

Proposition 1. For alln > 2,

n(n—1)(2n —1)
12

Lemma 1. Let Q be a point of type 2. Let k = min{b,r—b}. Then ib(r—ib) =

ik(r —ik) for a positive integer i.

def

pn = BO(X,0x(nKx)) = K% + (1 —2n)x(Ox) + L(n).

Proof. If k = r — b, then %_E ir—ib = —ib=1r— ib mod r. The graph of
x(r — x) yields ib(r — ib) = ik(r — ik). O

To compute p,, by Lemma 1, it may be assumed that the basket of singu-
larities consists of points related only to types % (% < %) because % and %
produce the same value for w.

From now on, we are going to consider only the points % in (0, %] for a basket

of singularities, where (r,b) = 1.
Lemma 2. Let B = {%} be a basket of singularities of X. Then

b | —5p2+ps
1 = I L
(1) \(Ox) = 3 o+ —22
B
b2
(2) K% = Z — —4x(Ox) — 3p2 + ps.
i
Proof. For a proof of (1), compute ps — 5p2 using Proposition 1. Recall that
b<i.
>3

p3 — 5p2 = 10X(Ox) - 4[1 + lQ

— 10x(Ox) + Z 2b(r — 2b)2; 4b(r — b)

B
=10x(0x) = Y _b.
B

For a proof of (2), compute 3ps — 5ps = 5K% — 211 + 3la.
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fz—*‘lx (Ox) — 3p2 + ps,
since ) 5 b = 10x(Ox) + 5p2 — p3 by (1).
Lemma 3. Let B = {%} be a basket of singularities of X. Then

b2
AX(Ox) + (3p2 —p3) < Y oS
B

(Ox) + (3p2 — p3).

Proof. The left inequality is induced easily by (2) in Lemma 2 since K3 > 0.
To prove the right inequality, by the result of R. Barlow,

r?—1
P Ex oY) =) ——— —24x(Ox),
B

where p: Y — X is a resolution of singularities of X (see Reid [5]).

re—1 1
:—§ — —p"'Kx (Y
X(0x) =55 T 51" Kx - eaY)
1 -1 1
— - —K3
2423: r 727X

izﬂfi 26*4 (Ox) — 3pa +
24 : r 79 ~ r X X D2 p3 |,

where the second inequality is Miyaoka-Yau inequality and the last equality is
proved just above. Hence,

b2
> <

B

IN

(Ox) + (3p2 — p3).
O
Even though the formula for p, is known and the basket of singularities is

given, it is complicate to express explicitly an equation form of p, because the
formula for p,, contains terms ib(g;ib) fori=1,

i—1in L(n).
More precisely, a term ib(g;ib) varies: for % in a basket of singularities,
blr—ib) if ib < r fe,0<t<l
(r — ) (ib=r)(2r—ib) ifr<ib<2r ie,l<b<2
or @=20)Gr=it) o <ih<3r ie,2<b<3

Thus, to find an explicit expression for L(n), we need to consider all the subin-
tervals in (0, 3] determined by

e 1 , ,
ED, df{—_€(0,§]‘2§z§n—1, (x,z):l}.
i
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Notice that the smallest point is ﬁ and the largest point is % in ED,,.

As an example, to express L(7) explicitly, it is enough to consider all the
subintervals of (0, %] determined by ED7; = {%, %, i, %, %, %}, ie., (0, %],
[5.2),--,[2, 3] because L(7) =1 + la + -+ + 6.

Let’s consider ED,, = {:—]}

Now, I; (i < n— 1) is expressed uniquely on each subinterval I determined
by ED,, because b is given as follows:

— b
J! k € Z such that b = b — kr for all — € I.
r

Notice that the above constant k£ depends only on a given subinterval I and a
multiple 4, not on the points % in a subinterval I. Thus, [; over I is

ib(r — ib) (ib — kr)((k + 1)r —ib)
li = = )
I Z 2r Z 2r
where the summation is over the points of the basket of singularities in 1.
Let’s consider a special linear combination Y77, ¢jp; of p; (¢; € Z) which
satisfies the following (1) and (2):
(1) Suppose that the terms y(Ox) and K3 are eliminated in 2?21 c;ip;-
Then in a linear combination 2?21 ¢jp;, there are terms only related to I;,
ie., Z?Zl ¢jp; is given as follows: for some ¢; € Z

n n—1
Z ¢jpj = Z qils-
Jj=1 i=1

We can express equations forms of I; over subintervals determined by ED,,.
(2) Suppose that 2?21 cjp; is expressed explicitly over the subintervals of
(0, 3] determined by ED,, as follows:

=)

> aib on a subinterval (

- > agh + dar on a subinterval [1, 2
Z cjp; = Z gil; = { >oasb+dsr  on asubinterval [2, f—z]
j i=1 : :

o]

Syngty

bim—1 1]
)

> amb+dyr  on a subinterval [ — 3

where the summation is over points % of a basket of singularities in each subin-
terval and aj, d; are integers. Suppose more that equations on a right side

have same value at the boundary point ZT’—J
J

Notice that there is no term related to r on the subinterval (0, %]

Definition 1. If a linear combination 2?21 c;p; satisfies the above conditions
1) and (2), we say that a linear combination Y ", ¢;p; is a linearized equation
Yy j=1CiPj

bWL—l
P rm—1’

form on {%, e 1} or linearized on (0, 1] for short.
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As an example, consider the following linear combination:
LE\7: 3p2+p3—pa—ps —pe+pr =200 —lo—2l3 —la+ 6.
Compute each [; on the subintervals determined by E D7 and add up. Then,

>.(—2b) on (0, §]
3p2+ps —pa—ps —pe+pr =< 2 (—T+4b) on [¢, 1]

64
0 on [1 1]
which the summation is over points % of a basket of singularities in each subin-
terval. Thus we have a linearized equation form LFE; 7 on (0, %] Notice that
LE1 7 has a non-positive value at every point in (0, 1].
Definition 2. For the sake of simplicity, let’s denote ‘n points of type %’ by
nxtornk
Define an operation W by

1 ba  nibi 4+ nabs
n—Wng— = ——— ==,
1 re  niry 4 nere

Since the next lemma is easily obtained from the construction of ED,,, we
just state the lemma without a proof.

Lemma 4. Let ED,, = { & }. Suppose that 2= < b < b yjith (r,b) = 1.
T Ti—1 s T
Then there are unique nonnegative integers m;_1, m; such that

b bi—1 b

- =MmM;_1 H m; —.

T Ti—1 T
Moreover, m;_1 = —br; + b;r and m; = br;_1 — b;_1r.

Suppose that > ", ¢;p; is linearized on ED,, = { % 1.
Now, we are going to construct a new basket of singularities from the original
basket B = {2} of singularities.

(i) For a point % in B with % < % < %, there exist m;_1, m; by the
above lemma. Then put these points m;_1 X ﬁ’:: and m; X % in the new

basket. Simply we may think that a point % in B is transformed into {m;_; X
bia bi

—, m; X .
Ti—1 Ti

(ii) For a point g in B with g < ﬁ, put points b x ﬁ in the new basket.
1

Simply speaking, a point % in B is transformed into b x —.

Let’s consider the case (i).
Since Zj ¢jp; is linearized on ED,, the equation form of Zj ¢;p; on the
bi—1 b

Ti—17 T

subinterval | ] is given as follows:

Z aib + dﬂ’,
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bi—1 bi]
ri—1’ Ty’

where the summation is over the points of B in |

The contribution of % to Zj c;p; is equal to the sum of two contributions

bi—1
Ti—1

) by i
of m;_1 and m; J* to 3 ¢pj, e,

Zijj |g =a;b+d;r
J

= a; (Mi—1bi—1 +mib;) + di (mi—1mi—1 +m;r;)

mi—1 (a;bi—1 + diri—1) + m; (a;ib; + dir;)

mi_1 Eijj loia +m; E:ijj |%'
Ti—1 k3

J J

In the case (ii), the both contributions of a point ¢ in B and b x —L5 to
> ¢jp; are also same since

doepi |l =ab=b{> e |l
J J

Therefore, to compute 2?21 ¢jp; which is linearized on E'D,,, it is not nec-
essary to use the original basket B of singularities. Instead, it is enough to
use a newly constructed basket from the original basket B which is described
above.

Definition 3. Denote by B,, a basket which is newly constructed above from
the original basket B. Let’s call B,, ‘the n-th linearized basket’ of B on ED,,.

In fact, B, consists of points in ED,,.
From now on, as a notation we are going to use B for the original basket of
singularities and B,, for the n-th linearized basket of B on ED,,.

The following lemma is useful to see the gap between the original basket B
and the newly constructed basket B5,,.

Lemma 5. Let B,, = {%} be the n-th linearized basket of B = {%} on ED,,.

Then
b2 b?

Proof. Let’s consider the following two cases

=
R

b 1 bi_
- S ) (2) -
r n—1 i1

IN
S|l o

IN
|
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For the case (1), it is enough to show g < bnl—jl since a point % in B is

transformed into b x ﬁ by Lemma 4. Thus,

12 2 1
()

n—1 T n—1 r
b ;
For the case (2), there are m;_1 and m,; such that b — g 2=l g o, b
) r Ti—1 i’
where m;_1 = —br; + b;r and m; = br;_1 — b;_1r.
- 2 b2 b2
Thus, it is enough to check bT < m;_1 7]_71 +m; -
2 2 2
B0 b
-1 +my — = —
Ti—1 T T

(7b7"i + bﬂ’)b?ﬁlTTi + (bTi,1 — biflT)b?TiflT — TiflTibQ

T qTiT
. —bi—1bir* + (biri—1 + bi—17i)rb — i1 b?
N Ti—1TiT
~ (bi—1r —ri_1b)(bir — 1)
- Ti—1TiT
= —p bi1 79) ﬁ79)20.
Ti—1 T r
Recall that the construction of ED,, shows b;r;_1 — b;_1r; = 1. [l

Remark. By the construction of By, > 3b=> 5 b;. By Lemma 2,
b —bps+ bi  —bpa+
+ P2 T P3 + D2 ps.

5 10 10 10 10

n

x(Ox) =

Remark. One of main tools is using appropriate linearized equation forms

> ; Cipj for our situation. Most of them have non-positive values at every

point % in the interval (0, %] We are going to denote by LFE; non-positive

linearized equation forms, most of which will be shown up later.

In proving the results, there are some parts which are very difficult to do
without using mathematical software or computer programming, such as find-
ing linearized equation forms, computing explicit expressions, checking non-
positiveness of LFE; on subintervals, and solving a system of linear equations.
These not only can be done easily by computer software, but also require huge
space to write in details. Thus, we are not going to present them here. We will
explain the method through the example LE; 7.

Proposition 2. For n =2m+ 1 (m > 3), consider the following non-positive
linearized equation form on (0, %] :

LEl,n . 2]?2 +pm—1 +pm — Pm+1 — Pm+2 — Pn—-1 +pn
If pra—1 > k for a positive integer k, then p,—1 > k. In particular, whenn =7,
p2 > 1 implies pg > 2.
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Proof. To get a contradiction, suppose that p,—1 < k.
If pm+1 > 0, then p,—1 > k since p;,—1 > k > 1. Thus, pypr+1 = 0. Also,
Dn > Dm+2 since py,—1 > k. Rearrange terms in LE; , as follows:

LEi ,: 2p2 + (Pm—1— DPn—1) + Pm + (Pn — Pm+2)-

Each term is non-negative. Thus, each term must be zero since LE ,, is non-
positive on (0, %] It means p,_1 = pm_1 > k. It is a contradiction.
When n =7, LEy 7 = (3p2 —p6 — pa) +p3+ (pr —ps). lf pg = 1, then py = 1.

It implies that LE, 7 is positive on (0, ]. Thus, ps > 2. O

Proposition 3. If ps > 1, then there exists n € {4, 5, 6} such that p, > 2
except the following cases.

case | p2 | p3 | pa | ps | pe | P7
Mlol1]loflol1]o
@ lol1]of1|1]o0
@ lol1]ol1|1]1
@ lol1]1]o|1]1
Gy o] 1|1 ]1|1]1
6) |0 1|1 |1]|1]2

Proof. Our claim holds true since pg > 2 if ps > 2. We also know pg > 2 if
p2 > 1. Thus, it is enough to consider the case that po = 0 and p3 = 1.
To find all the possible exceptional cases, suppose that p; < 1(i = 4,5,6).
Since ps = 1, pg = 1 clearly. Since p; (i = 2,...,6) is given, p7 should be
determined to keep LE; 7 < 0. Hence we have 8 possible exceptional cases, i.e.,
the above 6 cases plus the following two more cases:

@ lolt]t]ol1]o
@ of1]1|1|1]0

But cases (7) and (8) can’t happen since p3 = py = 1 imply p7 > 1. O

There is an easy way to find a linearized form Z? ¢jp;, which is replacing
K% and x(Ox) in p, (n > 4) by terms given in Lemma 2.

As an example, consider py = TK% — Tx(Ox) + L(4).

After replacing K% and x(Ox) by terms given in Lemma 2 and simplify.
Then we have the following:

7 7 > —1b on (0
= —5pb2+ 5p3 + . ’
P4 21’2 21’3 {Z%b—r on [%7 ],

where each summation is over points of B in each subinterval. Then, we obtain
a linearized form py — %p3 + %pQ on ED, = {%7 %}

N[—= W=
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Now, construct B4 on ED,4 from the original basket B, i.e.,
1 1
84 = {t(l) X

5’ t(2) X 5}?
where #(7) is the number of each point.
As explained just above Definition 3, py — %pg + %pg can be computed using
B, instead of the original basket B since it is linearized on (0, %] In fact, since
the values of py — %pg + %pg are f% and % at points % and % respectively,

7 7 1 1
— Lps+ spo = —=t(1) + =t(2).
Ps = 5P3+ 5D2 2()+2()
Construct By on ED7 = {—, £ Zv g, 5, 5} from the original basket B.
1 1 1 1 2 1
67 = {n(l) X 6, TL(2) X g, TL(S) X Z, TL(4) X g, TL(5) X g, TL(G) X 5 },

where n(4) is the number of each pomt in B7.

For n(n = 4,...,7), replace K% and x(Ox) in p, by terms in Lemma 2
and apply the above processes to p,. Then, we can get 4 linearized equation
forms on ED7. All these 4 linearized equation forms can be computed using
B7 instead of B. As an example, this time

7 7 1 1 1 1 1
- = —pg = —=-n(l) — =n(2) — = —=n(4 =
Pa— 5Ps+ P2 2n( ) 2n( ) 2n(3) 2n( )+ 0n(5) + 2n(6)
since an equation of py — %pg + %pg on each subinterval is given above.

Find all the linearized equation forms obtained for n = 4,...,7 using By.

Then we obtain a system of linear equations of n(4):

n(1)

pa— Tps+ L 1 1 _1 0o 1 n(2)
st 18 13 13 ¢ 1 17

Ps — p3+ p2 o — = —_ == — =2 _ 2 1 11 TL(3)

e N

p7 — 26p3 + 39p2 -9 -8 6 _3 0 4 n(5)

n(6)

Solve the above equation and the solutions are:

n(1) = 2n(6) — 3n(4) — 9p2 + 14ps — 10p4 + 2p5 + 2ps — P17,
n(2) = —4n(6) + 6n(4) + 15p2 — 29p3 + 21ps — 3ps — 3pe + p7,
n(3) = 3n(6) — 4”( ) — 13p2 + 22p3 — 13p4 + p5 + pe,

n(5) = 4n(6) — 5n(4) — 14ps + 26p3 — 19p4 + 5ps.

Theorem 1. There are inequalities between K35, x(Ox) and py,.

(1) K} <ba(©Ox) — bt dpr.
(2) K% < ?X(OX) - 1—12]?2 - ?m + 1—12p5~
(3) KX < q5x(Ox) — 55P2 — 5P + 35D
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(4) K% < —55x(Ox) = 5p2+ 5503 — 3594 + 5505 — g5 + 3507 + g5n(6),
where n(6) is the number of the point % in By as explained above.

Proof. Let B = {2} be the original basket of singularities. Let B, = {:4} be
the n-th linearized basket of singularities.

We are going to prove the case (4) first. The proofs for the other cases are
almost same.

For a proof of (4), we are going to use B7 and n(i) obtained just above. By

the remark below Lemma 5,
b —5p2 + p3

x(Ox) = 1_07L 10

_ Z —5p2 + p3
10 10

1 —5pg +
= = (n(1) +n(2) + n(3) + n(4) + 2n(5) + n(6)) + — L
=n(6) — n(4) — 4ps + 6ps — 4ps + ps.
Thus, we have
n(4) = — x(Ox) +n(6) — 4pz + 6p3 — 4p4 + ps,
b2 1 1 1 1 22 1
%L (D)2 +n(2)= +n(3)= + n(d)= + n(5)= + n(6)=
BZ” n(1)g +n2)z +n(3)7 +n(4)3 +n(5) % +n(6)5
7
1 Lo M9l 13T 259
3077 T 60" T 60 1P g T P2
119 9239
— ) + 22 006).
30n()+60n()
Since n(4) = —x(Ox) 4+ n(6) — 4ps + 6p3 — 4ps + ps,
o1 . 1 20 35 1 (6)+119 (©)
= —P5 — P4 — o - —n — .
2, 30P7 7 607 T 60”0 T 207t T 3070 T 122 T 60 30 X\UX
7
Recall Zgg Sz&i—zin Lemma 5. By Lemma 2,
b2
K% =Y — —4x(Ox) = 3p2+ ps
B '
b2
SZ—Z_—4X(OX)—3P2+P3
B
1 1 1 1 1 1 1 1
<-—— - — —py— — — — — —n(6).
< —3gX(Ox) = o2 5aps = 5apat Gops = b + 5apr 4 Ean(6)

For (1), consider py — §p3 + §p2 on EDy. It can be computed as follows:

7 7 1 1
L L = —#(1)= 2)=
pa = 5ps + 5p2 = —t(l)5 +1(2)5,
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where ¢(7) is the number of each point in B4. (See below Proposition 3.) From
this, we have t(2) = 2py — Tps + Tp2 + t(1).

b; —5po +
(Ox) =3 by it

10 10
1 1 —5p2+ps
=¢(1)= ) P C I
W 1%+ 10
:@+p473p3+p2
5 5 '

Thus, we have
t(1) = 5x(Ox) — p2 + 3p3 — pa.
b2

Since > 5, - = t(1)3 +t(2)3,

b? 1 1 1
K% <> = 4x(Ox) = 3p2 +p3 = oX(Ox) = gp2 + ops.
By

For (2) and (3), apply the same processes to p,, for n(n =4, 5) on ED5 and
n (4 <n < 6) on EDg respectively. Remaining steps are same. ]

Now, we are going to investigate 6 exceptional cases in Proposition 3.
Lemma 6. Assume that po =0, p3=1, p4=0, ps =0, ps =1, pr =0, i.e.,
the case (1) in Proposition 3. Then

1<py<ps <pi1, pi2>2andp,>2 forn>14.
Proof. Consider the non-positive linearized equation form LEj g on (0, 1]:
LEy1y9: 2p2 +p3+ps—ps —ps — ps + Py = —Ps + Do,
since py, (n = 2,...,7) are given. Since LE; ¢ <0 on (0, %] and p3 =1,
1 < py < ps < pu1-
To show p12 > 2, consider the linearized equation form:

LE5: 3ps + 3ps +ps — ps — pe — Pr — P12 + P13,

1

which is non-positive on (0, 5]. By the conditions on p, (n =2,...,7),

LE; : 3ps + 3ps + pa —ps — pe — Pr — P12 + p13 = 2 — p12 + p13.
Since LE5 < 0 on (0, %] and p13 > 0,
P12 > 2.
To show p,, > 2 for n > 14, we consider two cases pg > 2 and pg = 1.

Suppose pg > 2.
Clearly p14 > 2 and p1g > 2. p12 > 2 implies p15 > 2. Thus, since p3 =1,

pn > 2 forn > 14.

Now, suppose pg = 1.
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Consider another linearized equation form:

LEs3: Tpy + 4p3 + 2ps — ps — 2pg — 2ps — p1o + P13,

1

which is non-positive on (0, 1] and is zero only at 2 =1, 2 1 2 3 1

T35 T
LEs3 : Tp2 +4p3 + 2py — ps — 2ps — 2ps — p1o + P13 = —p1o + p13 < 0,

since p, are known for n = 2,...,8. Thus, p13 < p1p. Since p3 = 1, p1o < p13
clearly. Hence p1g = pi13-

It means that the equation form LEj is identically zero on (0, 3].

Since LE3|% is zero only at % 1271723 1 the original basket B of

singularities must consist of points I 5 3 %, %, 5 only, i.e.,

1 2 1 2 3 1
X t(2) x = t(3) x 3 t(4) x 3 t(5) x = t(6) x 2},
where t(7) is the number of each point.

Now, p, is known for n = 2,...,9. Recall that 1 < pg < ps.

Applying the following steps (1)~(4) to p, for n =4,...,9 with the basket
B, we obtain the system of linear equations of ¢(i):

(step 1) replace x(Ox) and K% in p, by terms in Lemma 2.

(step 2) rearrange the terms and obtain a linearized form for each n.

(step 3) construct a system of linear equations of (i) using the step 2.

(step 4) solve the system of linear equations of ¢(i) in step 3.

B = {t(1)

In fact, the system of linear equations of ¢(¢) is given as follows:

T A Y A A N
R T e ) _8
B E B |-
5 5 5 5 5 5 = 5
6 -9 -3 0 4 4]|t® —26
- -2 -2 0 F 2/ \t(6) -t

Then we obtain solutions ¢(¢) as follows:

(1) = 2t(6) — 3t(4),  t(2) =1—t(6) + 2t(4),
{ £(3) = 34 3t(6) — 4t(4), t(5) = —2 + 2t(6) — 3t(4).

Using t(i), compute x(Ox) and K% by Lemma 2. Then
t(4)

_ 3 _ &)

X(Ox) = —1(4) +1(6), K% = 0.

Thus, t(4) > 1 and #(6) > 2 since x(Ox) and K% are positive.

Now, we are ready to compute p,, for n = 14, 15, 16 since all the information,
i.e., x(Ox), K% and the basket of singularities are known.

P14 = 14+ t(4), P15 = 2+ f(4), and P16 = 1+ f(4)
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Since t(4) > 1, p, > 2 for n = 14, 15, 16. Therefore, since p3 = 1,
Ppn > 2 forn > 14. O

The proofs for the remaining cases are similar to Lemma 6. Almost the same
processes are going to be applied.

Lemma 7. Assume that po =0, p3=1, p4 =0, ps =1, ps =1, pr =0, i.e.,
the case (2) in Proposition 3. Then

pn>1forn>8, pg>2, p1a >2 and p, > 2 forn > 14.

Proof. Clearly, p, > 1 for n = 8, 9, 10 by the assumption. Since p3 =1,
pn > 1 for n > 8.
Consider the following linearized equation form:
LE4: 5ps +3ps + pa+ps — ps — P — 2ps — 2py + 2p11,
which is non-positive on (0, %] By the given conditions for p, (n =2,...,7),
LE4 : 5p2 +3p3+pa+ps —pe —pr — 2ps — 2pg +2p11 = 3 —2ps — 2pg +2p11 < 0.
Since p3 = 1, we have —2pg + 2p11 > 0. Thus, 3 — 2pg < 0. Hence
P9 > 2 and pia > 2.
Next, we are going to show p,, > 2 for n > 14.
Since ps = pg = 1 and pg > 2, we have p14 > 2 and p;5 > 2. To show

pn > 2 for n > 14, it’s enough to show pig > 2.
If pg > 2, then p1g > 2. Hence it is enough to consider the case pg = 1.

Suppose pg = 1.
Consider the following non-positive linearized equation form on (0, %]

LEs : 15p2 + 10p3 + 10ps — 2ps — 5pe — 3p7 — 8pg + 2pg — 2p10 + p11 + 2p13,

BRI b_ 1121 231: . 1
which is zero only at 2 = £, 7,2, 3, £, %, 5 in the interval (0, 5].

LEs = =5+ 2pg + pu1 + (=2p10 + 2p13) <0

by the conditions on p, (n = 2,...,8). Since ps = 1, —2p19 + 2p13 > 0. Thus,
po = 2, p11 = 1 and p1g = pi13 since that pg > 2 and p1; > 1. Then, LFj5 is
identically zero on (0, 1].

It means that the original basket B is given as follows:
B = {H1) x =, #(2) x 2, #(3) x 2, #(4) x =, #(5) x 2, £(6) x 2, #(7) x =}
- 5) 4) 7’ 3’ 5’ 7) 2 )

where t(7) is the number of each point.
Now apply the step (1)~(4) to p,(n = 2,...,9) and obtain the system of
linear equations of ¢(i). Then
t(1) =1, t(2)=t(6), t(3)=—6-+t(4)—2t(6),
£(5) = —11 + 2t(4) — 3t(6), t(7) = —18 + 3t(4) — 4(6).
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Using t(i), get x(Ox) and K% by Lemma 2. Then
1 1 1
=-5+t4)—t6), K¥ = —— — —t —t(4).
X(Ox) = —5 4+ 14) ~ 1(6), K% =~ — —1:1(6) + 5-1(4)
Compute pig using all the information x(Ox), K% and B.
p1e = —11 4 2t(4) — 3t(6) = 2¢(3) + 1 + ¢(6).
If ¢(3) = t(6) = 0, then ¢(4) = 6 since #(3) = —6 + t(4) — 2¢(6). It means
K% = 0. It contradicts since K% is positive. Thus,
P16 = 2. O

Lemma 8. Assume that po =0, ps=1, ps =0, ps =1, ps =1, pr =1, i.e.,
the case (3) in Proposition 3. Then

pn>1 for n>5, pi2>2 and p, >2 for n > 14.

Proof. Clearly, p, > 1 for n > 5 since p3 = 1 and ps = pg = pr = 1.
Consider the following two non-positive linearized forms on (0, %]
LEs5 : 3p2+3ps +ps — ps —ps — pr — P12 + P13
LEg : 4ps + 2p3 — ps — ps — P9 + p11.
By the conditions on p,, for n (4 <n <7),
P13 < p12 from LEj
1+ p11 < ps+py from LEg.
If pg > 2, then p13 > 2, p14 > 2 and p12 > 2 since ps = pg = 1 and p13 < p12.
Thus, if pg > 2, then we have
Pn > 2 forn >12.
If pg > 2, then p1o > 2 since p3 = 1. p14 > 2, p15 > 2 and p1g > 2 since
ps = pe = p7 = 1. Thus, if pg > 2, then we have
p12 > 2 and p, > 2 forn > 14.

To complete the proof, it is enough to consider the case pg = pg = 1.
Then p1; = 1 since 1 + p11 < pg + pg = 2 from LEg.

First, let’s prove p12 > 2. To get a contradiction, assume pio = 1.
Then p1g = p13 = 1 since p3 = 1 and p1g < p13 < p12 = 1. Thus,

p2=0,p3=1,p4=0, andp, =1forn=2>5,...,13.
Consider the non-positive linearized equation form LE; 7 on (0, 3]:

LEy7: 3p2+ps —pa—Ps — P + D1,
11
102
the linearized form LE; 7 is identically zero on (0, %] Thus, the original basket

B consists of the points in [, 1].

which is zero only at points in | ]. By the condition on p,, for n =2,...,7,
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Consider the non-positive linearized equation form LE7 on (0, %]

LE7: Tpy + 5p3 + 3pa + ps — 3pr — 2pg — pg — p1o — 2p12 + 3p13,

which is zero only at points in {1, 2, +} U[2, 2]U{3}. By the condition on p,

for n = 2,...,13, the linearized form LEj7 is identically zero on (0, 3]. Thus,

)2
the original basket B consists of the points in {1, 2, 1} U [2, 2] U {3}.
Hence, the original basket B of singularities must consist of the points in

2 1 32 1
z §} U [gv g] U {5}-
It means that the 9-th linearized basket By from B must be given as follows:
2 1 3 2 1
By = {t(l) X ?7 t(2) X gv t(3) X ga t(4) X ga t(5) x 5}5

where ¢(7) is the number of each point in Bg.
To obtain more information about B, consider another non-positive lin-
earized equation form LEg on (0, 3]:

LEg : 6pa + py + 3ps + pe — 3p7 — 2ps — p1o + P11 — 2p12 + 2p13.

The value of LEg at a point % in B is given as follows:

b _ 2
0 at2 =1
LEs|y = b3 2
i 0 atie[g,g]
1
0 at;f§

LEjg are identically -1 on (0, %] by the conditions on p, for n =2,...,13. Thus,
the original basket B must contain only one point of %, since % is the only point
which gives -1 to LEs. It means that ¢(1) =1 in By.

Now, we are going to apply the step (1)~(4) in Lemma 6 to py,. .., pg using
By. Then, we have the system of linear equations of #():

-1 -1 _1 5 1 _zI

14 3 2 1 Al () _A

% ¥ 5 B [t® R

5 5 5 5 5 5

I T A LSl
t(5

-2 -3 -2 0 2 —4t

The solutions t(i) are given as follows:
H2)=t(1)+2, tB3)=1, t(4)=2t(1)—1, ¢(5)=3t1)—4.
Since t(1) = 1, ¢(5) = —1. It contradicts since #(7) is nonnegative. Therefore,
if ps = pg = 1, then we have
P12 > 2.

Next, we are going to prove p, > 2 for n > 14 in the case pg = pg = 1.
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The fact p12 > 2 implies that p;5 > 2 and p,, > 2 for n > 17 since p3 = 1
and p, > 1 for n > 5.
Consider the following two non-positive linearized forms on (0, %]

LEn 15 2p2 + pe + p7 — P8 — P9 — P14 + P15
LE; 17 : 2p3 + pr + ps — pg — p1o — P16 + P17
By the conditions on p,, for n (2 <n <9),
p15 < pig from LEq 15
1+ p17 < p1o + p1e from LE; 17.
Since p15 > 2, p14 > 2. Since p17 > 2 and p1g > p1o, p16 = 2. Therefore,
pn > 2 forn > 14. O
Lemma 9. Assume that po =0, p3=1, pa=1, ps =0, ps =1, pr =1, i.e.,
the case (4) in Proposition 3. Then
pn =1 forn>6, ps>2,pi1>2 p2>2 andp, > 2 forn>14.

Proof. Since py = 1, we have pg > 1. Thus, p, > 1 for n > 6 clearly.
Consider the non-positive linearized form LE7 g on (0, 1]:

LE\g: 2p2+p3+ps—ps —ps —Ps+ P9 =1—pg+pg <0

by the conditions on p,, for n = 4,...,7. Since pg > 1, pg > 2. Thus, since
ps=1,ps=1and p, >1forn>6,

p11 > 2,p12 > 2 and p, > 2 for n > 14. O
Lemma 10. Assume that po =0, p3 =1, py =1, ps =1, pg =1, pr =1,
i.e., the case (5) in Proposition 3. Then
pn>1 form>3, p,>2 forn>S8.

Proof. 1t is clear that p, > 1 for n > 3.
Consider the following three non-positive LE; g, LE4 and LE; 11 on (0, %]

LEy9 :2ps +p3 +pas —ps —Ps — P + P9 = =P + Po

LE1 11 :2p2 + ps + p5s — pe — p7r — P1o + P11 = —p1o + P11

LE4:5p2+ 3ps+ pa+ ps— pe— pr— 2ps — 2po+ 2p11 = 3+2(p11— ps) — 2pg
by the assumptions on p,. Since p3 = 1, p11 — ps > 0 clearly. Then we have

Py 2> 2
from LFE,. The non-positiveness of each LE; implies
2 < pg < ps < p11 < pro-
Therefore, since ps = 1,

pn > 2 forn > 8. O
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Lemma 11. Assume that po =0, p3 =1, ps =1, ps =1, pg =1, pr = 2,
i.e., the case (6) in Proposition 3. Then

pp>1 forn>3 and p, >2 forn > 10.
Proof. Clearly, p, > 1 for n > 3 and also p, > 2 for n > 10 since p; =2. O
Theorem 2. p, > 1 for at least one n in {6, 8, 10}.
Proof. To derive a contradiction, assume pg = ps = p1g = 0. Then,

p2=p3=ps=ps =0.
From non-positive linearized equation forms LE;7; and LE;g¢ on (0, 1], we
obtain py = 0 and pg = 0 respectively.
Consider the following non-positive LEg on (0, 1]:

LEy : 9p2 + 4p3 + 3ps — 3ps — pr — 2ps — 2p10 + p11 + P13,

which is zero only at % = i, %, %, %, % By conditions on p,, for n =2,...,10,
LEQ = P11 +p13, which implies P11 = P13 = 0.
It means that LEg is identically zero on (0, %] Thus, the original basket B

of singularities must be given as follows:

1 1 2 3 1

X3 H2) x 3, 13) % 2, 1(4) % 2, 1(5) % 5,

where t(7) means the number of each point. Apply the step (1)~(4) in the
proof of Lemma 6 to p, for n = 4,...,9 with the basket B of singularities.
Then we have a system of linear equations of ¢(7):

1

B={t(1)

11 g 11 0

b _3 1 B A () 0

LI SRS (A N N ) 0
5 5 5 5 5 t(g) —

6 -3 0 4 4 0

_19 _9 g o1 o[ |4 0
H B g & f) \tO) 0
2 2 2 2

The solutions t(i) and x(Ox) are given as follows:
t(2) = 2t(1), t(3) = (1), t(4) =t(1), ¢(5) = 2¢(1), x(Ox) =t(1).

From Lemma 3, we have the following:

b2 1681 r2—1 1353
—=—t(1 3 —68x(O 3ps — p3 = ——1t(1).
ten ten
Thus,
ZE>SZT2_1—68 (Ox) +3ps —
r r X(Ux P2 — P3,
ben ben

which is a contradiction by Lemma 3.
Therefore, there is at least one n in {6, 8, 10} such that p,, > 1. O
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Theorem 3. Suppose that ps > 1 or ps > 1. Then
(1) p12 > 2.
(2) pn > 2 for n > 14 with a possible exceptional case which must satisfy:
i) p2>1,p3 =ps =pr =py9 =0 and py5 < 1.
ii) pn > 2 for an even integer n (n > 6).
i) K% < £x(0x) — &5p2.
Proof. To prove the theorem, let’s consider the following two cases:

Case (1): po > 1, Case (2): po =0 and ps > 1.

Case (1) py > 1.

By Proposition 2, pg > 2. Since p2 > 1, p, > 2 for an even integer n > 6
clearly. In particular, p1o > 2, p14 > 2 and pig > 2.

If p, > 1 for at least one n € {3, 5, 7, 9}, then we have p15 > 2 since p,, > 2
for an even integer n > 6. Thus, p, > 2 for n > 14.

Therefore, we can conclude that

p12 > 2 and p, > 2 forn > 14

with a possible exceptional case which is described in the theorem. The in-
equality K3 < %x((’)x) — 1—12p2 comes from (2) of Theorem 1.

Case (2) p2 =0 and ps > 1.

By Proposition 2, pg > k if p3 > k.

Now, let’s divide this case into the following three subcases:

[(2-1) case]: p2 =0 and ps > 2

[(2-2) case]: po =0 and ps =1 and In in {4, 5, 6} such that p, > 2
[(2-3) case]: po=0and ps =1 and p, < 1foralln=4,5,6

Subcase (2-1) p2 =0 and p3 > 2.
Since p3 > 2, pg > 2. Then p,, > 2 for n =6, 8,9, 11, 12, and n > 14.

Subcase (2-2) p2 =0, p3 =1 and In in {4, 5, 6} such that p,, > 2

If py > 2, then p, > 2 forn =4, 7, 8 and n > 10 since p3 = 1.

If ps > 2, then p, > 2 for n = 5, 8, 10, 11 since p3 = 1. By Proposition 2,
p12 > 2. Thus, p, > 2 for n =5, 8 and n > 10.

To complete the subcase (2-2), suppose pg > 2.

We obtain p,, > 2 for n =6, 9, 12, 14, 15 since ps = 1 and pg > 1.

If p1g > 2, then we have p,, > 2 for n =6, 9, 12 and n > 14 since p3 = 1.

To derive a contradiction, assume pig = 1.

Clearly ps = 1. Moreover, py = ps = p7 = p1o = 0. If not, we have p1g > 2
since p, > 2 for n =6, 9, 12.

Since ps = 1 and pg > 2, we have pg < p12 < p15 easily.

Recall the equation expression of LE; 7, which is strictly negative on (0, i)
and is identically zero on [i, %] By the conditions on p,, for n =2,...,7,

LE177 =1 —pe < 0.



322 DONG-KWAN SHIN

It means that the original basket B must contain at least one point in (0, i)
Consider the non-positive linearized form LE; ¢ on (0, 1]:

LE19: 2p2 + p3 +pa—ps — ps — Ps + Po,

which is zero only at points in [, 3] U [£,3]. By the conditions on p, for

n=2,3,4,5, 7 and 8, we obtain
LE19: 2ps +ps+ps—ps —p6—DPs+ P9 =—p6+py < 0.

Since ps < pg, p¢ = po. It means that LE; g is identically zero on (0,%].
Therefore, the original basket B must consist of points in [£, ] U [Z, 3] only.
Consider the non-positive linearized form LEj ;7 on (0, 3]:
By the conditions on p,, for n =2, 7, 8, 10 and 16,

LE117: 2p2 +p7+ps — P9 — p1o — P16 + P17 = —po + p17 < 0.

Since pg > 2 and pg = 1, we have pg < p17. Thus, pg = p17.
Since p3 = 1 and pg = 1, pg < p14 < p17 clearly. Since pg = pg = p17,

Pe = P9 = P14 = P17-

Consider the non-positive linearized form LEj 15 on (0, 3]:

LE115: 2p2 +pe +pr — ps — P9 — P14 + P15,

3 1

which is zero only at points in [£,+] U [, 3] U[2, 3

1, 3 ]. By the conditions on p,
forn=2,...,9,

LE:15: 2p2 +pe +p7 —ps — P9 —p1a+p1s = —1 — pra +p15 < 0.
Thus, p15 < 1+ p14. Since pg = p14 and pg < p15, we obtain

P15 = p1a + L.

Then LE) ;5 is identically zero on (0, %] It means that the original basket B
of singularities must consist of points in [, #] U [{, 3] U[2, 5] only.

We already showed that the original basket B of singularities must consist
of points in [£, 3] U[2,3]. Thus, we conclude that the basket B must consist
of points in [+, £] U[2, 1] only. But, it contradicts since the original basket B

must contain a point in (0, i) by LE 7. Thus, if ps > 2, then we have
D16 = 2.
In conclusion, pi2 > 2 and p,, > 2 for n > 14 in the subcase (2-2).

Subcase (2-3) p2 =0, ps=1land p, <1lforalln=4,56
The subcase (2-3) is already described in Proposition 3 and investigated
through Lemma 6 to Lemma 11. We can conclude that

pi12 > 2 and p, > 2 forn > 14. 0
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Table for LE; used in the proofs

LEi, | 2p2 4 DPm—1+DPm — Dmtl —Pmt2 — Pn—1+DPn (n=2m+1)

LE> | 3p2+3ps +ps—ps —peé — Pr — P12 + P13

LE3 | Tp2+4ps + 2py — ps — 2ps — 2ps — p1o + P13

LEy | 5p2+3ps + psa+ps — pe — pr — 2ps — 2po + 2p11

LEs | 15py + 10p3 + 10py — 2ps — 5ps — 3p7 — 8ps + 2pg — 2p10 + p11 + 2p13

LEg | 4p2 +2ps — pe — ps — P9 + P11

LE; | Tpa+ 5p3 + 3ps+ ps — 3p7 — 2psg — po — p1o — 2p12 + 3p13

LEg | 6p2+ ps+ 3ps + pe — 3p7 — 2ps — p1o + p11 — 2p12 + 2p13

LEg | 9p2 +4p3 + 3ps — 3ps — p7 — 2ps — 2p10 + P11 + P13
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