WUFI 시뮬레이션 프로그램을 이용한 목조주택 벽체 레이어 구성에 따른 hygrothermal 성능 평가

DOI QR코드

DOI QR Code

강유진;김수민
Kang, Yujin;Kim, Sumin

  • 투고 : 2015.11.11
  • 심사 : 2015.12.25
  • 발행 : 2016.01.25

초록

건물에너지 저감에 효과적으로 기여하는 건축 재료를 이용하는 목조주택을 기반으로 단열 성능이 향상되고 있다. 그러나 고단열 고기밀화로 인한 습기 제어가 어려워져 외벽의 결로 및 곰팡이 발생으로 인하여 성능이 저하될 수 있다. 이에 열 습기 시뮬레이션 프로그램을 이용하여 선정한 5가지 형태의 목조주택 외벽의 열 습기 성능, 결로 발생 및 곰팡이 성장 위험을 평가하였다. 목조주택은 농촌주택 표준설계도 '10과 '14, $2^{{\prime}{\prime}}{\times}6^{{\prime}{\prime}}$형, EIFS 그리고 목조형 패시브 하우스로 선정하였고, 각 벽체 레이어를 구성에 따라 벽 A, B, C, D, E로 구분하였다. 벽체의 열관류율은 각각 0.171, 0.172, 0.221, 0.150, $0.079W/m^2K$이다. 벽 A와 C의 OSB 절대함수량은 기준치 20%를 초과하는 값이 나타났고, 결로 평가를 통하여 단열재 내부 표면에서 겨울철에 결로가 발생할 수 있음을 확인하였다. 벽 D와 E는 외단열 벽체로 다른 벽체에 비하여 함수량 평가와 결로 평가에서 우수한 결과를 보여주었다. 그러나 곰팡이 성장 위험 평가에서 5가지 형태의 벽체 모두 곰팡이 성장 위험성이 있음을 확인하였다. 이에 따라 외벽의 열 습기 성능의 차이는 열적 성능에 의한 발생보다는 레이어 구성에 따른 차이가 발생하는 것으로 판단되었다. 모든 벽체는 비슷한 열적 성능을 가지고 있으나 레이어에 따라 동일한 조건에서의 적합성이 다르게 나타나는 것을 확인하였다.

키워드

WUFI;wooden houses;hygrothermal performance;water content;condensation and mould growth risk

참고문헌

  1. Budaiwi, I., Abdou, A. 2013. The impact of thermal conductivity change of moist fibrous insulation on energy performance of buildings under hot-humid conditions, Energy and Buildings 60: 388-399. https://doi.org/10.1016/j.enbuild.2013.01.035
  2. Kim, S., Yu, S., Seo, J., Kim, S. 2013. Thermal Performance of Wooden Building Envelope by Thermal Conductivity of Structural Members, Journal of the Korean Wood Science and Technology 41(6): 515-527. https://doi.org/10.5658/WOOD.2013.41.6.515
  3. Kuenzel, H.M., Holm, A. 1999. Parctical assessment of plasters by modern building physical assessment, WTA series of publications.
  4. Kwon, Y.-C. 2012. High-Efficiency Insulations for Passive Houses, Proceedings of the SAREK 2012 Winter Annual Conference, 326-333.
  5. McGraw Hill Construction. Wood Rates: How Wood Products Stack Up in Green Building Systems / How Wood Products Stack Up in Green Building Systems. continuingeducation.construction.com.
  6. Sedlbaure, K. 2001. Prediction of mould fungus formation on the surface of and inside building components, thesis. University of Stuttgart, Germany.
  7. Selbaure, K., Breuer, K. 2003. Mould growth prediction with a new biohygrothermal method and its application in practice, thesis. University of Stuttgart, Germany.
  8. Winistorfer, P., Chen, Z.J., Lippke, B., Stevens, N. 2005. Energy consumption and greenhouse gas emissions related to the use, maintenance, and disposal of a residential structure, Wood and Fiber Science: 128-139.
  9. Yu, S.-G., Kim, S.-H., Seo, J., Kim, S. 2013. Analysis of Energy Efficiency of Light-Weigh Wood Frame House and Wooden Passive House Using PHPP, Journal of the Architectural Institute of Korea 29(8): 199-207.
  10. Zhang, H., Yoshino, H. 2010. Analysis of indoor humidity environment in Chinese residential buildings, Building and Environment 45: 2132-2140. https://doi.org/10.1016/j.buildenv.2010.03.011

피인용 문헌

  1. 1. Evaluation and Analysis of The Building Energy Saving Performance by Component of Wood Products Using EnergyPlus vol.44, pp.5, 2016, doi:10.5658/WOOD.2016.44.1.75

과제정보

연구 과제 주관 기관 : 한국연구재단