Pt@Cu/C Core-Shell Catalysts for Hydrogen Production Through Catalytic Dehydrogenation of Decalin

  • Kang, Ji Yeon ;
  • Lee, Gihoon ;
  • Jeong, Yeojin ;
  • Na, Hyon Bin ;
  • Jung, Ji Chul
  • Received : 2015.11.30
  • Accepted : 2015.12.15
  • Published : 2016.01.27


Pt@Cu/C core-shell catalysts were successfully prepared by impregnation of a carbon support with copper precursor, followed by transmetallation between platinum and copper. The Pt@Cu/C core-shell catalysts retained a core of copper with a platinum surface. The prepared catalysts were used for hydrogen production through catalytic dehydrogenation of decalin for eventual application to an onboard hydrogen supply system. Pt@Cu/C core-shell catalysts were more efficient at producing hydrogen via decalin dehydrogenation than Pt/C catalysts containing the same amount of platinum. Supported core-shell catalysts utilized platinum highly efficiently, and accordingly, are lower-cost than existing platinum catalysts. The combination of impregnation and transmetallation is a promising approach for preparation of Pt@Cu/C core-shell catalysts.


Pt@Cu/C core-shell;impregnation;transmetallation;hydrogen production;decalin dehydrogenation


  1. J. Houghton, Global Warming, Cambridge University press, Cambridge (1997).
  2. S. M. Ibrahim, Korean J. Chem. Eng., 31, 1792 (2014).
  3. L. Barreto, A. Makihara and K. Riahi, Int. J. Hydrogen Energy, 28, 267 (2003).
  4. S. G. Chalk and J. F. Miller, J. Power Sources, 159, 73 (2006).
  5. S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, Catal. Today, 120, 246 (2007).
  6. J. V. Pande, A. Shukla and R. B. Biniwale, Int. J. Hydrogen Energy, 37, 6756 (2012).
  7. W. -F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, T. Zhu and R. R. Adzic, Angew. Chem. Int. Ed., 51, 6131 (2012).
  8. R. B. Biniwale, S. Rayalu, S. Devotta and M. Ichikawa, Int. J. Hydrogen Energy, 33, 360 (2008).
  9. L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001).
  10. V. Ananthachar and J. J. Duffy, Sol. Energ., 78, 687 (2005).
  11. G. Cacciola, N. Giordano and G. Restuccia, Int. J. Hydrogen Energy, 9, 411 (1984).
  12. A. A. Shukla, P. V. Gosavi, J. V. Pande, V. P. Kumar, K. V. R. Chary and R. B. Biniwale, Int. J. Hydrogen Energy, 35, 4020 (2010).
  13. M. P. Lazaro, E. Garcla-Bordeje, D. Sebastian, M. J. Lazaro and R. Moliner, Catal. Today, 138, 203 (2008).
  14. D. Sebastian, C. Alegre, L. Calvillo, M. Perez, R. Moliner and M. J. Lazaro, Int. J. Hydrogen Energy, 39, 4109 (2014).
  15. C. Zhang, X. Liang and S. Liu, Int. J. Hydrogen Energy, 36, 8902 (2011).
  16. R. B. Biniwale, N. Kariya and M. Ichikawa, Catal. Lett., 105, 83 (2005).
  17. S. Hodoshima, S. Takaiwa, A. Shono, K. Satoh and Y. Saito, Appl. Catal. A: Gen., 283, 235 (2005).
  18. S. Hodoshima, H. Arai, S. Takaiwa and Y. Saito, Int. J. Hydrogen Energy, 28, 1255 (2003).
  19. A. Shukla, S. Karmakar and R. B. Biniwale, Int. J. Hydrogen Energy, 37, 3719 (2012).
  20. J. K. Ali, E. J. Newson and D. W. T. Rippin, Chem. Eng. Sci., 49, 2129 (1994).
  21. C. Shinohara, S. Kawakami, T. Moriga, H. Hayashi, S. Hodoshima, Y. Saito and S. Sugiyama, Appl. Catal. A: Gen., 266, 251 (2004).
  22. Y. Saito, K. Aramaki, S. Hodoshima, M. Saito, A. Shono, J. Kuwano and K. Otake, Chem. Eng. Sci., 63, 4935 (2008).
  23. D. Jian-ping, S. Chang, S. Jin-ling, Z. Jiang-hong and Z. Zhen-ping, J. Fuel Chem. Techno., 37, 468 (2009).
  24. M. Neergat and R. Rahul, J. Electrochem. Soc., 159, 234 (2012).
  25. A. Sarkar and A. Manthiram, J. Phys. Chem. C, 114, 4725 (2010).
  26. G. Lee, Y. Jeong, B.-G. Kim, J. S. Han, H. Jeong, H. B. Na and J. C. Jung, Catal. Communs., 67, 40 (2015).
  27. G. Lee, J. Y. Kang, Y. Jeong and J. C. Jung, Korean J. Mater. Res., 25, 191 (2015).


Supported by : Myongji University