Electrical Transport Properties of La0.5Sr0.5CrO3 Ceramics

La0.5Sr0.5CrO3 세라믹스의 전기전도특성

Jung, Woo-Hwan

  • Received : 2015.07.30
  • Accepted : 2015.12.22
  • Published : 2016.01.27


The electrical transport properties of $La_{0.5}Sr_{0.5}CrO_3$ below room temperatures were investigated by dielectric, dc resistivity, magnetic properties and thermoelectric power. Below $T_c$, $La_{0.5}Sr_{0.5}CrO_3$ contains a dielectric relaxation process in the tangent loss and electric modulus. The $La_{0.5}Sr_{0.5}CrO_3$ involves the transition from high temperature thermal activated conduction process to low temperature one. The transition temperature corresponds well to the Curie point. The relaxation mechanism has been discussed in the frame of electric modulus spectra. The scaling behavior of the modulus suggests that the relaxation mechanism describes the same mechanism at various temperatures. The low temperature conduction and relaxation takes place in the ferromagnetic phase. The ferromagnetic state in $La_{0.5}Sr_{0.5}CrO_3$ indicates that the electron - magnon interaction occurs, and drives the carriers towards localization in tandem with the electron - lattice interaction even at temperature above the Curie temperature.


dielectric relaxation;electron - magnon interaction;electron-phonon interaction;small polaron;spin polaron


  1. A. Fujimori, I. Hase, M. Namatame, Y. Fujishima, and Y. Tokura, Phys. Rev. B, 46, 9841 (1992).
  2. D. A. Crandles, T. Timusk, J. D. Garrett and J. E. Greedan, Phys. Rev. B, 49, 16207 (1994).
  3. Y. Okada, T. Arima, Y. Tokura, C. Murayama and N. Mori, Phys. Rev. B, 48, 9667 (1993).
  4. H. L. Ju, C. Eylem, J. L. Peng, B. W. Eichhorn and R. L. Greene, Phys. Rev. B, 49, 13335 (1994).
  5. M. Onoda and M. Yasumoto, J. Phys. Condens. Matter., 9, 3861 (1997).
  6. M. Onoda and M. Yasumoto, J. Phys. Condens. Matter., 9, 5623 (1997).
  7. T. Katsufuji, Y. Taguchi and Y. Tokura, Phys. Rev. B, 56, 10145 (1997).
  8. O. Akaki, A. Chaninani, T. Yokoya, H. Fujisiwa, T. Takahashi and M. Onoda, Phys. Rev. B, 56, 12050 (1998).
  9. N. Shanthi and D. D. Sarma, Phys. Rev. B, 57, 2153 (1998).
  10. S. Yamaguchi, Y. Okimoto and Y. Tokura, Phys. Rev. B, 54, R11022 (1996).
  11. E. Iguchi, K. Ueda and W. H. Jung, Phys. Rev. B., 54, 17431 (1996).
  12. M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindle, G. A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki and S. Uchida, Phys. Rev. B, 46, 4511 (1992).
  13. M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C. T. Chen, R. Potze, G. A. Sawatzky, H. Eisaki and S. Uchida, Phys. Rev. B, 47, 16124 (1992).
  14. K. Tezuka, Y. Hinatsu, A. Nakamura, T. Inami, Y. Shimojo and Y. Morii, J. Solid State Chem., 141, 404 (1998).
  15. T. A. Tyson, J. M. de Leon, S. D. Conradson, A. R. Bishop, J. J. Neumeier, H. Roder and J. Zang, Phys. Rev. B, 53, 13958 (1996).
  16. D. P. Karim and A. T. Aldred, Phys. Rev. B, 20, 2255 (1979).
  17. W. J. Weber, C. W. Griffin and J. L. Bates, J. Am. Ceram. Soc., 70, 265 (1987).
  18. D. B. Marsh and P. E. Parris, Phys. Rev. B, 54, 7720 (1996).
  19. P. S. Devi and M. S. Rao, J. Solid State Chem., 98, 237 (1992).
  20. S. K. Park, T. Ishikawa, Y. Tokura, J. Q. Li and Y. Matsui, Phys. Rev. B, 60, 10788 (1999).
  21. T. Ishikawa, S. K. Park, T. Katsufuji, T. Arima and Y. Tokura, Phys. Rev. B, 58, R133326 (2000).
  22. Y. P. Lee, V. G. Prokhorov, J. Y. Rhee, K. W. Kim, G. G. Kaminsky and V. S. Fils, J. Phys. Condens. Matter., 12, L133 (2000).
  23. D. D. Sarma, K. Maiti, E. Vescovo, C. Carbone, W. Eberhardt, O. Rader and W. Gudat, Phy. Rev. B, 20, 13369 (1996).
  24. K. P. Bansal, S. Kumari, B. K. Das and G. C. Jain, J. Mater. Sci., 18, 2095 (1983).
  25. A. Mansingh, J. M. Reyes and M. Sayer, J. Non - Cryst. Solids, 7, 12 (1972).
  26. A. Seeger, P. Lunkenheimer, J. Hemberger, A. A. Mukhin, V. Yu Ivanov, A. M. Balbasov and A. Loid, J. Phys. Condens. Matter., 11, 3273 (1999).
  27. H. Jhnas, D. Kim, R. J. Rasmussen and J. M. Honig, Phys. Rev. B, 54, 11224 (1996).
  28. P. K. Bajpai and K. N. Singh. Physica. B, 406, 1226 (2001).
  29. P. Kumar, B. P. Singh, T. P. Sinha and N. K. Singh, Physica B, 406, 139 (2001).
  30. F. S. Howell, R. A. Bose, P. B. Macedo and C. T. Moynihan, J. Phys. Chem., 78, 639 (1974).
  31. H. Mahamoud, B. Louati, F, Hlel and K. Guidara, J. Alloy Comp., 509, 6083 (2011).
  32. X. Q. Liu, W. Z. Yang, C. L. Song and X. M. Chen, Appl. Phys. A, 100, 1131 (2010).
  33. D. K. Mahato, A. Dutta and T. P. Sinha, J. Mater. Sci., 45, 6757 (2010).
  34. S. Saha and T. P. Sinha, Phys. Rev. B, 65, 134102 (2002).
  35. M. Idrees, M. Nadeem and M. M. Hassan, J. Phys. D Appl. Phys., 43, 155401 (2010).
  36. A. Dutta and T. P. Sinha, Physica B, 405, 1475 (2010).
  37. W. H. Jung, J. Appl. Phys., 90, 2455 (2001).
  38. A. Levstik, C. Filipic, V. Bobnar, S. Drnovsek, J. Holc and M. Kosec, Physica B, 405, 4271 (2010).
  39. D. Emin and T. Holstein, Ann. Phys., 53, 439 (1969).
  40. W. Archibald, J. S. Zhou and J. B. Goodenough, Phys. Rev. B, 53, 14445 (1996).
  41. M. Culter and N. F. Mott, Phys Rev., 181, 1336 (1969).
  42. I. G. Austin and N. F. Mott, Adv. Phys., 18, 41 (1969).


Supported by : Howon University