High Performance Thin-Film Transistors Based on Zinc Oxynitride Semiconductors: Experimental and First-Principles Studies

Kim, Yang-Soo;Kim, Jong Heon;Kim, Hyun-Suk

  • Received : 2015.11.04
  • Accepted : 2015.12.22
  • Published : 2016.01.27


The properties of zinc oxynitride semiconductors and their associated thin film transistors are studied. Reactively sputtered zinc oxynitride films exhibit n-type conduction, and nitrogen-rich compositions result in relatively high electron mobility. Nitrogen vacancies are anticipated to act as shallow electron donors, as their calculated formation energy is lowest among the possible types of point defects. The carrier density can be reduced by substituting zinc with metals such as gallium or aluminum, which form stronger bonds with nitrogen than zinc does. The electrical properties of gallium-doped zinc oxynitride thin films and their respective devices demonstrate the carrier suppression effect accordingly.


zinc oxynitride;thin-film transistor;field-effect mobility;flat panel displays;first-principles calculation


  1. H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006).
  2. T. Kamiya, K. Nomura and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010).
  3. J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, Thin Solid Films, 520, 1679 (2012).
  4. Y. Ye, R. Lim and J. M. White, J. Appl. Phys., 106, 074512 (2009).
  5. H.-S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J.-B. Seon, S.-J. Seo, S.-J. Kim, E. Lee, J. G. Chung, H. Lee, S. Han, M. Ryu, S. Y. Lee and K. Kim, Sci. Rep., 3, 1459 (2013).
  6. K.-C. Ok, H.-J. Jeong, H.-S. Kim and J.-S. Park, IEEE Electron Device Lett., 36, 38 (2015).
  7. K.-C. Ok, H.-J. Jeong, H.-M. Lee, J. Park and J.-S. Park, Ceram. Int., 41, 13281 (2015).
  8. J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S.-J. Choi, H.-S. Kim and D. H. Kim, ACS Appl. Mater. Interfaces, 7, 15570 (2015)
  9. S. Lee, A. Nathan, Y. Ye, Y. Guo and J. Robertson, Sci. Rep., 5, 13467 (2015).
  10. G. Kresse and J. Furthmuller, Matter Mater. Phys., 54, 11169 (1996).
  11. G. Kresse and J. Joubert, Matter Mater. Phys., 59, 1758 (1999).
  12. P. E. Blochl, Matter Mater. Phys., 50, 17953 (1994).
  13. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
  14. Y. Kang, S. H. Jeon, Y.-W. Son, Y.-S. Lee, M. Ryu, S. Lee and S. Han, Phys. Rev. Lett., 108, 196404 (2012).
  15. T. L. Tansley and R. J. Egan, Matter Mater. Phys., 45, 10942 (1992).
  16. M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett., 96, 196402 (2008).
  17. R. Long, Y. Dai, L. Yu, B. Huang and S. Han, Thin Solid Films, 516, 1297 (2008).
  18. J. H. Jeong, H. W. Yang, J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, J. Song and C. S. Hwang, Electrochem. Solid-State Lett., 11, H157 (2008).
  19. J. S. Park, T. S. Kim, K. S. Son, W.-J. Maeng, H.-S. Kim, M. Ryu and S. Y. Lee, Appl. Phys. Lett., 98, 012107 (2011).


Grant : BK21플러스

Supported by : 충남대학교