Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes

Lithium disilicate 유리의 입자크기에 따른 결정화 기구

  • Received : 2015.12.14
  • Accepted : 2015.12.28
  • Published : 2016.01.27


We have investigated the crystallization mechanism of the lithium disilicate ($Li_2O-2SiO_2$, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under $45{\mu}m$, $75{\sim}106{\mu}m$, and $125{\sim}150{\mu}m$, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.


$Li_2O-2SiO_2$ glass;phase transition;crystallization mechanism;activation energy


  1. T. Kawamoto and S. Abe, Phys. Rev. B, 68, 235112 (2003).
  2. G. Sarre, P. Blanchard and M. Broussely, J. Power Sources, 127, 65 (2004).
  3. T. Fuss, C. S. Ray, N. Kitamura, M. Makihara, and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003).
  4. H. W. Yoon, C. H. Song, Y. S. Yang and S. J. Yoon, Korean J. Mater. Res., 22, 61 (2012).
  5. P. Hautojarvi, A. Vehanen, V. Komppa and E. Pajanne, J. Non-Cryst. Solids, 29, 365 (1978).
  6. H. R. Fernandes, D. U. Tulyaganov, I. K. Goel and M. F. Ferreira, J. Am. Ceram. Soc., 91, 11 (2008).
  7. S. Furusawa, T. Kasahara and A. Kamiyama, Solid State Ionics, 180, 649 (2009).
  8. J. Du and L. R. Corrales, J. Chem. Phys., 125, 114702 (2006).
  9. I. Gutzow, B. Durschang and C. Russel, J. Mater. Sci. 32, 5389 (1997).
  10. S. Buchner, P. Soares, A. S. Pereira, E. B. Ferreira, and N. M. Balzaretti, J. Non-Cryst. Solids, 356, 3004 (2010).
  11. N. Mizouchi and A. Cooper Jr., J. Am. Ceram. Soc., 56, 320 (1973).
  12. X. J. Xu, C. S. Ray, and D. E. Day, J. Am. Ceram. Soc., 74, 909 (1991).
  13. T. Fuss, C. S. Ray, N. Kitamura, M. Makihara and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003).
  14. M. Avrami, J. Chem. Phys., 9, 177 (1941).
  15. H. E. Kissinger, J. Res. Nat. Bur. Stand., 57, 217 (1956).
  16. D. W. Henderson, J. Non-Cryst. Solids, 30, 301 (1979).
  17. K. Matusita, T. Komatsu and R. Yokota, J. Mat. Sci., 19, 291 (1984).
  18. H. W. Choi, Y. H. Kim, Y. H. Rim and Y. S. Yang, Phys. Chem. Chem. Phys., 15, 9940 (2013).
  19. J. W. Christian, The theory of transformations in metals and alloys, 2nd Part 1 (Pergamon Press, NY, 1975).
  20. S. J. Kim, J. E. Kim, Y. H. Rim and Y. S. Yang, Solid State Commun., 131, 129 (2004).
  21. H. W. Choi and Y. S. Yang, J. Them. Anal. Calorim., 119, 2171 (2015).
  22. S. J. Kim, J. E. Kim, H. W. Choi, Y. H. Rim and Y. S. Yang, Mat. Sci. Eng. B, 113, 149 (2004).
  23. H. W. Choi, Y. H. Rim and Y. S. Yang, J. Korean Phys. Soc., 63, 2376 (2013).


Grant : 강유전체 유리의 결정화 동역학 및 결정방향 조절에 따른 압전성 변화 연구