DOI QR코드

DOI QR Code

Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes

Lithium disilicate 유리의 입자크기에 따른 결정화 기구

  • Received : 2015.12.14
  • Accepted : 2015.12.28
  • Published : 2016.01.27

Abstract

We have investigated the crystallization mechanism of the lithium disilicate ($Li_2O-2SiO_2$, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under $45{\mu}m$, $75{\sim}106{\mu}m$, and $125{\sim}150{\mu}m$, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.

Keywords

$Li_2O-2SiO_2$ glass;phase transition;crystallization mechanism;activation energy

References

  1. T. Kawamoto and S. Abe, Phys. Rev. B, 68, 235112 (2003). https://doi.org/10.1103/PhysRevB.68.235112
  2. G. Sarre, P. Blanchard and M. Broussely, J. Power Sources, 127, 65 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.008
  3. T. Fuss, C. S. Ray, N. Kitamura, M. Makihara, and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003). https://doi.org/10.1016/S0022-3093(02)01878-1
  4. H. W. Yoon, C. H. Song, Y. S. Yang and S. J. Yoon, Korean J. Mater. Res., 22, 61 (2012). https://doi.org/10.3740/MRSK.2012.22.2.61
  5. P. Hautojarvi, A. Vehanen, V. Komppa and E. Pajanne, J. Non-Cryst. Solids, 29, 365 (1978). https://doi.org/10.1016/0022-3093(78)90157-6
  6. H. R. Fernandes, D. U. Tulyaganov, I. K. Goel and M. F. Ferreira, J. Am. Ceram. Soc., 91, 11 (2008).
  7. S. Furusawa, T. Kasahara and A. Kamiyama, Solid State Ionics, 180, 649 (2009). https://doi.org/10.1016/j.ssi.2008.12.031
  8. J. Du and L. R. Corrales, J. Chem. Phys., 125, 114702 (2006). https://doi.org/10.1063/1.2345060
  9. I. Gutzow, B. Durschang and C. Russel, J. Mater. Sci. 32, 5389 (1997). https://doi.org/10.1023/A:1018683331603
  10. S. Buchner, P. Soares, A. S. Pereira, E. B. Ferreira, and N. M. Balzaretti, J. Non-Cryst. Solids, 356, 3004 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.02.027
  11. N. Mizouchi and A. Cooper Jr., J. Am. Ceram. Soc., 56, 320 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12504.x
  12. X. J. Xu, C. S. Ray, and D. E. Day, J. Am. Ceram. Soc., 74, 909 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb04321.x
  13. T. Fuss, C. S. Ray, N. Kitamura, M. Makihara and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003). https://doi.org/10.1016/S0022-3093(02)01878-1
  14. M. Avrami, J. Chem. Phys., 9, 177 (1941). https://doi.org/10.1063/1.1750872
  15. H. E. Kissinger, J. Res. Nat. Bur. Stand., 57, 217 (1956). https://doi.org/10.6028/jres.057.026
  16. D. W. Henderson, J. Non-Cryst. Solids, 30, 301 (1979). https://doi.org/10.1016/0022-3093(79)90169-8
  17. K. Matusita, T. Komatsu and R. Yokota, J. Mat. Sci., 19, 291 (1984). https://doi.org/10.1007/BF02403137
  18. H. W. Choi, Y. H. Kim, Y. H. Rim and Y. S. Yang, Phys. Chem. Chem. Phys., 15, 9940 (2013). https://doi.org/10.1039/c3cp50909e
  19. J. W. Christian, The theory of transformations in metals and alloys, 2nd Part 1 (Pergamon Press, NY, 1975).
  20. S. J. Kim, J. E. Kim, Y. H. Rim and Y. S. Yang, Solid State Commun., 131, 129 (2004). https://doi.org/10.1016/j.ssc.2004.04.033
  21. H. W. Choi and Y. S. Yang, J. Them. Anal. Calorim., 119, 2171 (2015). https://doi.org/10.1007/s10973-015-4391-9
  22. S. J. Kim, J. E. Kim, H. W. Choi, Y. H. Rim and Y. S. Yang, Mat. Sci. Eng. B, 113, 149 (2004). https://doi.org/10.1016/S0921-5107(04)00400-3
  23. H. W. Choi, Y. H. Rim and Y. S. Yang, J. Korean Phys. Soc., 63, 2376 (2013). https://doi.org/10.3938/jkps.63.2376

Acknowledgement

Grant : 강유전체 유리의 결정화 동역학 및 결정방향 조절에 따른 압전성 변화 연구