DOI QR코드

DOI QR Code

Study on the Relationship between the Pay TV Subscriber's Genre Preference and VOD Purchase : Focusing on the Movie VOD of IPTV Service

<유료 방송 가입자의 장르 선호도와 VOD 구매의 관계에 관한 연구:IPTV 영화 VOD 이용을 중심으로>

  • 조성기 (서울과학기술대학교 IT정책대학원 방송통신정책전공) ;
  • 이영주 (서울과학기술대학교 IT정책대학원 방송통신정책전공)
  • Received : 2016.08.18
  • Accepted : 2016.09.07
  • Published : 2016.11.28

Abstract

This paper investigates the relationship between the Pay TV subscriber's genre preference and VOD purchase by analyzing actual purchase data of movie VOD of IPTV subscribers for 8 months. The result shows as follows. First, in case of purchasing movie contents below 4000 won, user's genre preference was higher than that of using contents over 4,000 won. This means the subscribers tend to follow their genre preference when the mass-typed recommendation is limited. Second, those who purchase foreign contents show higher genre preference than those who purchase domestic movies. Third, subscribers who purchase more frequently and much more tend to use more diverse genres. Heavy users or those who have higher willingness to pay would consume more diverse contents. It implies that VOD use would increase by supplying the personal recommendation service based on the subscriber's genre preference.

Keywords

Contents Recommendation Service;Pay TV;VOD;Genre Preference

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. 조도은, 김시정, 곽윤식, "사용자 선호도 학습을 이용한 개인화 콘텐츠 추천 방법 연구," 한국정보기술학회논문지, pp.229-235, 2011.
  2. 최재원, 이홍주, "개인화 추천시스템의 사용자 평가에 대한 통합적 접근," 한국전자거래학회지, 제17권, 제3호, pp.85-103, 2012.
  3. X. Amatriain, "Big & personal: data and models behind netflix recommendations." Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. ACM, 2013.
  4. B. Hallinan, Ted Striphas, "Recommended for you: The Netflix Prize and the production of algorithmic culture," New Media & Society, Vol.18, No.1, pp.117-137, 2016. https://doi.org/10.1177/1461444814538646
  5. 방송통신위원회, 2015년 방송시장 경쟁상황 평가 보고서, 2016.
  6. http://news.inews24.com/php/news_view.php?g_menu=020320&g_serial=887998
  7. 방송통신위원회, 2015년도 방송매체이용행태조사, 2016.
  8. 영화진흥위원회 산업정책연구팀, 2015년도 한국영화산업결산, 2016.
  9. 임정수, "최신 영화 VOD 이용자의 선호도에 대한 컨조인트 분석," 한국콘텐츠학회논문지, 제13권, 제5호, pp.191-198, 2013.
  10. 임현석, 정재민, "부가판권시장에서의 영화소비방식과 소비자 특성," 문화경제연구, 제17권, 제3호, pp.57-79, 2014.
  11. 조신, 김희선, "IPTV에서의 VOD 시청패턴 결정 요인에 관한 실증분석," 한국콘텐츠학회논문지, 제 15권, 제4호, pp.153-167, 2015.
  12. T. Hennig-Thurau, M. B. Houston, and G. Walsh, "The differing roles of success drivers across sequential channels: An application to the motion picture industry," Journal of the Academy of Marketing Science, Vol.34, No.4, pp.559-575, 2006. https://doi.org/10.1177/0092070306286935
  13. 박선규, 최성진, "디지털케이블 TV에서 영화의 선행창구 성과, 장르, 홀드백 기간이 영화 VOD구매에 미치는 영향," 방송공학회논문지, 제20권, 제6호, pp.950-962, 2015.
  14. 이상호, "지상파 VOD 다시보기 홀드백연장과 TV 콘텐츠 시청행태에 관한 시계열 추세 연구-IPTV 및 디지털케이블 TV를 중심으로," Journal of Digital Contents Society, 제15권, 제5호, pp.643-650, 2014. https://doi.org/10.9728/dcs.2014.15.5.643
  15. 조석현, 정동훈, "VOD 홀드백 정책 변화가 IPTV 와 케이블 TV VOD 이용에 미치는 영향," 한국콘텐츠학회논문지, 제15권, 제5호, pp.142-150, 2015.
  16. E. Oat, "Analysis of Netflix architecture and business model," 2013.
  17. T. Jursonovics, Content Pricing in IPTV, Darmstadt, 2014.
  18. L. L. Pena, "Breaking Binge: Exploring The Effects Of Binge Watching On Television Viewer Reception," 2015.
  19. 배진아, "지상파 및 다채널 텔레비전 시청의 수동성과 능동성 비교 연구," 한국언론학보, 제48권, 제5호, pp.30-52, 2004.
  20. 강남준, 이종영, 이혜미, "군집분석 방법을 사용한 미디어 레퍼토리 유형분석," 한국방송학보, 제22권, 제2호, pp.7-46, 2008.
  21. 전범수, "문화예술 취향 레퍼토리 구조 연구," 한국콘텐츠학회논문지, 제12권, 제6호, pp.201-210, 2012.
  22. L. Friedman, An Introduction to Film Genres, Norton &company inc, 2014.
  23. 정원조, 조은기, "국내 극장용 영화 시장에서의 장르 차별화에 관한 연구," 한국언론정보학보, 통권 51호, pp.47-64, 2010.
  24. 김혜원, "영화마케팅 현장에서 영화 장르구분이 미치는 영향" 동국대학교 영상미디어센터 학술대회, pp.9-14, 2011.
  25. 전범수, "국내 영화관람객의 영화 소비 행동," 한국방송학보, 제17권, 제2호, pp.297-326, 2003.
  26. 박신영, "텔레비전 드라마 시청자의 성향이 이용동기, 장르 선호도 및 드라마 몰입 정도에 미치는 영향," 언론과학연구, 제10권, 제1호, pp.166-201, 2010.
  27. 전범수, "오락 프로그램 유형과 VOD 시청 관계에 대한 탐색적 연구," 언론과학연구, 제15권, 제1호, pp.301-324, 2015.
  28. M. Balabanovic and Y. Shoham, "Fab: contentbased, collaborative recommendation," Communications of the ACM, Vol.40, No.3, pp.66-72, 1997.
  29. D. Das and H. ter Horst, "Recommender systems for TV," Recommender Systems, Technical Report WS-98-08, 1998.
  30. P. Cotter and B. Smyth. "Ptv: Intelligent personalised tv guides," AAAI/IAAI. 2000.
  31. S. Gutta, et al. "TV content recommender system," AAAI/IAAI, 2000.
  32. L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. Chiarotto, A. Difino, and B. Negro. "Personalized recommendation of TV programs," Congress of the italian association for artificial intelligence, Springer Berlin Heidelberg, 2003.
  33. 윤병대, "IPTV 환경에서 온톨로지와 k-medoids 기법을 이용한 개인화 시스템," 지능정보연구, 제16권, 제3호, pp.147-161, 2010.
  34. O. Jojic, M.Shukla and N. Bhosarekar, "A probabilistic definition of item similarity," Proceedings of the fifth ACM conference on Recommender systems, ACM, 2011.
  35. 김재영, 이석원, "온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법," 지능정보연구, 제19권, 제3호, pp.25-44, 2013.
  36. 최형탁, 조성배, "ConceptNet기반 장르별 감정분류를 적용한 협업 필터링 추천시스템," 한국정보과학회 학술발표논문집, pp.216-219, 2011.
  37. 송민정, "동영상 스트리밍 기업인 넷플릭스의 비즈니스모델 최적화 연구," 방송통신연구, 통권 제93호, pp.40-74, 2016.
  38. 오수영, 오연희, 한성희, 김희정, "사용자 소비이력기반 방송 콘텐츠 추천 시스템," 방송공학회지, 제17권, 제1호, pp.129-139, 2012.
  39. 이은숙, "시청패턴 및 관여도에 따른 디지털방송 가이드 서비스 유형 분류 및 속성 연구," 디지털디자인학연구, 제12권, 제4호, pp.165-174, 2012.
  40. 조승제, 이영주, "유료방송 서비스 이용자의 미디어 이용특성과 가이드 채널에 대한 평가가 VOD 이용의사에 미치는 영향에 관한 연구," 방송공학회논문지, 제21권, 제2호, pp.210-218, 2016.
  41. J. Zimmerman, K. Kauapati, A.L. Buczak, D. Schaffer, S. Gutta, and J. Martino, "TV personalization system," Personalized Digital Television, Springer Netherlands, pp.27-51, 2004.
  42. K. Ali and W. Van Stam, "TiVo: making show recommendations using a distributed collaborative filtering architecture," KDD '04 Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.394-401, 2004.
  43. O. Jojic, M. Shukla, and N. Bhosarekar, "A probabilistic definition of item similarity," Proceedings of the fifth ACM conference on Recommender systems. ACM, 2011.
  44. http://www.fiercecable.com/cable/cox-comcast-execs-say-users-want-content-recommendation
  45. 방송위원회, 2009 방송 매체 이용행태 조사, 2010.
  46. D. Waterman, R. Sherman, and S. W. Ji, "The Economics of Online Television: Revenue Models, Aggregation, and 'TV Everywhere'," TRPC Conference, 2012.
  47. 김상호, 한진만, "한국영화의 흥행성과 결정요인 분석," 사회과학연구, 제53권, 제1호, pp.191-214, 2014.
  48. 정지인, 베이지안(Bayesian) 방법을 이용한 국내 소비자의 영화 선택 기준에 관한 연구, 이화여자대학교 대학원, 2003
  49. 전범수, "국내외 텔레비전 장르 선호도 연구," 한국방송학보, 제19권, 제3호, pp.209-241, 2005.
  50. 한국여성정책연구원, 2015년 가족실태조사분석연구, 2016.
  51. 이진영, 박재영, "경쟁 신문의 등장에 따른 신문의 보도 차별화 전략: 한겨레 창간의 경우," 한국언론학보, 제54권, 제6호, pp.444-470, 2010.
  52. T. Atwater "Product Differentiation in Local TV News," Journalism & Mass Communication Quarterly, Vol.61, No.4, pp.757-762, 1984. https://doi.org/10.1177/107769908406100402
  53. D. G. McDonald and S. F. Lin, "The effect of new networks on US television diversity," Journal of media economics, Vol.17, No.2, pp.105-121, 2004. https://doi.org/10.1207/s15327736me1702_3