티타늄 판재의 파이버 레이저 용접시 공정변수에 따른 용접특성 (II) - 입열량 제어에 따른 영향 -

Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

  • 김종도 (한국해양대학교 기관공학부) ;
  • 김지성 (한국해양대학교 대학원 기관공학과)
  • Kim, Jong Do (Division of Marine Engineering, Korea Maritime and Ocean Univ.) ;
  • Kim, Ji Sung (Graduate School, Korea Maritime and Ocean Univ.)
  • 투고 : 2016.09.23
  • 심사 : 2016.11.10
  • 발행 : 2016.12.01


레이저 용접은 고밀도 용접법 중에 하나로 기존 용접방법에 비해 적은 입열로 깊은 용입과 빠른 용접속도를 얻을 수 있다. 연속 출력 파형 레이저 용접 시 입열량은 레이저 출력 및 용접속도에 의해 결정된다. 본 연구에서는 파이버 레이저를 사용하여 두께 0.5 mm의 순 티타늄 박판에 비드 및 겹치기 용접을 실시하였으며 레이저 출력 및 용접속도에 따른 용접성을 평가하였다. 레이저 출력 및 용접속도에 따른 용입깊이, 비드폭, 접합길이, 비드형상을 관찰하고 인장전단시험을 통해 기계적인 특성을 파악하였다. 실험결과, 겹치기 용접은 $P_L=0.5kW$, ${\nu}=2.5m/min$$P_L=1.5kW$, ${\nu}=6m/min$ 조건에서 양호한 접합길이를 가진 용접부를 얻을 수 있었으며, 용접부는 고출력보다 저출력 조건일 때 더 우수한 연성을 나타냈다.

Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of $0.5mm^t$ pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.


  1. Kim, J. D. and Moon, J. H., 2004, "C-ring Stress Corrosion Test for Inconel 600 and Inconel 690 Sleeve Joint Welded by Nd : YAG Laser," Corrosion Science, Vol. 46, Issue 4, pp. 807-818.
  2. Vandewynckelea, A., Vaamondea, E., Fontana, M., Herwigb, P. and Masciolettic, A., 2013, "Laser Welding Head Tailored to Tube-sheet Joint Requirements for Heat Exchangers Manufacturing," Physics Procedia, Vol. 41, pp. 144-152.
  3. Jiang, P., Wang, C., Zhou, Q., Shao, X., Shu, L. and Li, X., 2016, "Optimization of Laser Welding Process Parameters of Stainless Steel 316L using FEM, Kriging and NSGA-2," Advances in Engineering Software, Vol. 99, pp. 147-160.
  4. Cao, X. and Jahazi, M., 2009, "Effect of Welding Speed on Butt Joint Quality of Ti-6Al-4V Alloy Welded Using a High Power Nd: YAG laser," Optics and Lasers in Engineering, Vol. 47, pp. 1231-1241.
  5. Chen, H. C., Bi, G., Lee, B. Y. and Cheng, C. K., 2016, "Laser Welding of CP Ti to Stainless Steel with Different Temporal Pulse Shapes," Journal of Materials Processing Technology, Vol. 231, pp. 58-65.
  6. Song, G. and Luo, Z., 2011, "The Influence of Laser Pulse Waveform on Laser-TIG Hybrid Welding of AZ31B Magnesium Alloy," Optics and Lasers in Engineering, Vol. 49, pp. 82-88.
  7. Choi, S. Y., Kim, J. D. and Kim, J. S., 2015, "The Study on Weldability of Boron Steel and Hot-stamped Steel by Using Laser Heat Source(III)," The Korean Society of Mechanical Engineers, Vol. 39, pp. 89-94.
  8. Squillace, A., Prisco, U., Ciliberto, S. and Astarita, A., 2011, "Effect of Welding Parameters on Morphology and Mechanical Properties of Ti-6Al-4V Laser Beam Welded Butt Joints," Journal of Materials Processing Technology, Vol. 212, pp. 427-436.
  9. Casalino, G., Mortello, M. and Campanelli, S. L., 2015, "Ytterbium Fiber Laser Welding of Ti6Al4V Alloy," Journal of Manufacturing Processes, Vol. 20, pp. 250-256.