DOI QR코드

DOI QR Code

ON THE INDEFINITE POSITIVE QUADRIC ℚ+n-2

Hong, Seong-Kowan

  • Received : 2016.01.22
  • Accepted : 2016.01.28
  • Published : 2016.01.30

Abstract

The generalized Gaussian image of a spacelike surface in $L^n$ lies in the indefinite positive quadric ${\mathbb{Q}}_+^{n-2}$ in the open submanifold ${\mathbb{C}}P_+^{n-1}$ of the complex projective space ${\mathbb{C}}P^{n-1}$. The purpose of this paper is to find out detailed information about ${\mathbb{Q}}_+^{n-2}{\subset}{\mathbb{C}}P_+^{n-1}$.

Keywords

spacelike surface;the generalized Gauss map;indefinite quadric

References

  1. Abe, K. and Magid, M., Indefinite Rigidity of Complex Submanifold and Maximal Surfaces, Mathematical Proceedings 106 (1989), no. 3, 481-494
  2. Akutagawa, K. and Nishigawa, S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Mathematical Journal 42 (1990), no. 1, 67-82. https://doi.org/10.2748/tmj/1178227694
  3. Asperti, Antonio C. and Vilhena, Jose Antonio M., Spacelike Surfaces in $L^4$ with Degenerate Gauss Map, Results in Mathematics 60 (2011), no. 1, 185-211. https://doi.org/10.1007/s00025-011-0146-5
  4. Graves, L., Codimension One Isometric Immersions between Lorentz Spaces, Ph.D. Thesis, Brown University, 1977.
  5. Kobayasi, O., Maximal Surfaces in the 3-dimensional Minkowski Space $L^3$, Tokyo J. Math. 6 (1983), 297-309. https://doi.org/10.3836/tjm/1270213872
  6. Milnor, T. K., Harmonic Maps and Classical Surface Theory in Minkowski 3-space, Trans. of AMS 280 (1983), 161-185.
  7. O'Neil, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
  8. Osserman, R.,A Survey of Minimal Surfaces, Dover, New York, 1986

Acknowledgement

Supported by : Pusan National University