DOI QR코드

DOI QR Code

Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials

서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상

Kim, Seung-Tae;Cho, Won-Ju
김승태;조원주

  • Received : 2016.01.08
  • Accepted : 2016.01.24
  • Published : 2016.02.01

Abstract

In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

Keywords

a-IGZO (amorphous In-Ga-Zn-O);TFT (thin-film transistor);Work function

References

  1. M. Ito, M. Kon, C. Miyazaki, N. Ikeda, M. Ishizaki, Y. Ugajin, and N. Sekine, IEICE transactions on electronics, 90, 11 (2007).
  2. T. Kamiya, K. Nomura, and H. Hosono, Science and Technology of Advanced Materials, 11, 4 (2010).
  3. K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, Electron Devices, IEEE Transactions on, 36, 12 (1989). [DOI: http://dx.doi.org/10.1109/16.40970] https://doi.org/10.1109/16.40970
  4. S. J. Lim, S. J. Kwon, H. Kim, and J. S. Park, Applied Physics Letters, 91, 18 (2007).
  5. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, and H. Hosono, Applied physics letters, 89, 11 (2006). [DOI: http://dx.doi.org/10.1063/1.2353811] https://doi.org/10.1063/1.2353811
  6. A. Suresh and J. F. Muth, Applied Physics Letters, 92, 3 (2008). [DOI: http://dx.doi.org/10.1063/1.2824758]
  7. S. Y. Park, J. H. Song, C. K. Lee, B. G. Son, C. K. Lee, H. J. Kim, and H. J. Kim, Electron Device Letters, IEEE, 34, 7 (2013).
  8. B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine, Applied physics letters, 89, 6 (2006). [DOI: http://dx.doi.org/10.1063/1.2335372]
  9. V. Subramanian, M. Toita, N. R. Ibrahim, S. J. Souri, and K. C. Saraswat, Electron Device Letters, IEEE, 20, 7 (1999). [DOI:http://dx.doi.org/10.1109/55.772370]
  10. A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, Applied physics letters, 90, 12 (2007). [DOI: http://dx.doi.org/10.1063/1.2716355]
  11. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Japanese Journal of Applied Physics, 45, 5S (2006).
  12. Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 516, 17 (2008). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.10.051]
  13. W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, and J. W, Thin Solid Films, 518, 22 (2010). [DOI: http://dx.doi.org/10.1016/j.tsf.2010.03.028]
  14. J. H. Na, M. Kitamura, and Y. Arakawa, Applied Physics Letters, 93, 6 (2008).
  15. J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Applied Physics Letters, 93, 9 (2008).
  16. S. H. Rha, U. K. Kim, J. S. Jung, H. K. Kim, Y. S. Jung, E. S. Hwang, Y. J. Chung, M. J. Lee, J. H. Choi, and C. S. Hwang, Electron Devices, IEEE Transactions on, 60, 3 (2013). [DOI: http://dx.doi.org/10.1109/TED.2012.2236558]
  17. K. W. Jo, AND W, J. Cho, Applied Physics Letters, 105, 21 (2014).
  18. A. Suresh, and J. F. Muth, Applied Physics Letters, 92, 3 (2008). [DOI: http://dx.doi.org/10.1063/1.2824758]

Acknowledgement

Supported by : 한국연구재단