Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution

PNN 치환에 따른 PMW-PNN-PZT-BF 세라믹스의 미세구조와 압전 특성

Sin, Sang-Hoon;Yoo, Ju-Hyun

  • Received : 2016.01.08
  • Accepted : 2016.01.24
  • Published : 2016.02.01


In this work, [$Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3$] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of $BiFeO_3$, $Li_2CO_3$, and $CaCO_3$ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of $CaCO_3$, $Li_2CO_3$. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at $920^{\circ}C$ showed the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33{\cdot}}g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=566$ [pC/N], $g_{33}=29.28[10^{-3}mV/N]$, $d_{33{\cdot}}g_{33}=16.57[pm^2/N]$, $k_p=0.61$, density=7.82 [$g/cm^3$], suitable for duplex ultrasonic sensor application.


PMW-PNN-PZT;PNN substitution;Piezoelectric properties;Low temperature sintering


  1. Y. H. Jeong, K. J. Yoo, and J. H. Yoo, J Electroceram., 23, 387 (2009). [DOI:]
  2. X. Chao, Z. Yang, M. Dong, and Y. Zhang, J. Magn. Magn. Mater., 323, 2012 (2011). [DOI:]
  3. T. H. Shin, J. Y. Ha, H. C. Song, S. J. Yoon, H. H. Park, and J. W. Choi, Ceram. Int., 39, 1327 (2013). [DOI:]
  4. J. Y. Ha, J. W. Choi, C. Y. Kang, D. J. Choi, H. J. Kim, and S. J. Yoon, Mater. Chem. Phys., 90, 396 (2005).[DOI:]
  5. K. H. Yoon, K. S. Kim, B. S. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 14, 20 (2001).
  6. J. H. Yoo, K. J. Kim, Y. H. Jeong, and S. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 766 (2007). [DOI:]
  7. M. W. Lee, S. J. Kim, M. S. Yoon, S. L. Ryu, and S. Y. Kweon, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 1077 (2008). [DOI:]
  8. K. S. Lee, I. H. Lee, J. H. Yoo, and S. L. Ryu, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 1034-1038 (2007). [DOI:]
  9. T. Hu, J. Heli, A. Deleniv, S. Leppavuori, and S. Gevorgian, J. Am. Ceram. Soc., 87, 578 (2004). [DOI:]
  10. S. Licht, H. Wu, C. Hettige, B. Wang, J. Asercion, J. Lau, J. Stuart, Electronic Supplementary Information (ESI), 1 (2012).
  11. G. M. Lee, J. Y. Lee, and J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 690 (2015). [DOI:]