Novel Bi2S3/TiO2 Heterogeneous Catalyst: Photocatalytic Mechanism for Decolorization of Texbrite Dye and Evaluation of Oxygen Species

  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2015.08.21
  • Accepted : 2015.10.27
  • Published : 2016.01.31


A heterogeneous $Bi_2S_3/TiO_2$ composite catalyst was synthesized via a green ultrasonic-assisted method and characterized by XRD, SEM, EDX, TEM analysis. The results clearly show that the $TiO_2$ particles were homogenously coated with $Bi_2S_3$ particles, indicating that $Bi_2S_3$ particle agglomeration was effectively inhibited after the introduction of anatase $TiO_2$. The Texbrite BA-L (TBA) degradation rate constant for $Bi_2S_3/TiO_2$ composites reached $8.27{\times}10^{-3}min^{-1}$ under visible light, much higher than the corresponding value of $1.04{\times}10^{-3}min^{-1}$ for $TiO_2$. The quantities of generated hydroxyl radicals can be analyzed by DPCI degradation, which shows that under visible light irradiation, more electron-hole pairs can be generated. Finally, the possible mechanism for the generation of reactive oxygen species under visible-light irradiation was proposed as well. Our result shows the significant potential of $Bi_2S_3$-semiconductor-based $TiO_2$ hybrid materials as catalysts under visible light for the degradation of industry dye effluent substances.


  1. A. Z. Abdullah and P. Y. Ling, "Heat Treatment Effects on the Characteristics and Sonocatalytic Performance of $TiO_2$ in the Degradation of Organic Dyes in Aqueous Solution," J. Hazard. Mater., 173 [1-3] 159-67 (2010).
  2. M. Inoue, F. Okada, A. Sakurai, and M. Sakakibara, "A New Development of Dyestuffs Degradation System Using Ultrasound," Ultrason. Sonochem., 13 [4] 313-20 (2006).
  3. L. Zhu and W. C. Oh, "Review for Semiconductor/Reduced Graphene Oxide Nanocomposites: Fabrication, Characterization and Application for Decontamination of Organic Dyes," J. Multifunct. Mater. Photosci., 5 [2] 153-70 (2014).
  4. K. Hashimoto, H. Irie, and A. Fujishima, "$TiO_2$ Photocatalysis: a Historical Overview and Future Prospects," Jpn. J. Appl. Phys., 44 [12] 8269-85 (2005).
  5. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, "Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., 95 [3] 735-58 (1995).
  6. W. H. Dong, F. Pan, L. L. Xu, M. R. Zheng, C. H. Sow, K. Wu, G. Q. Xu, W. Chen, "Facile Synthesis of CdS@$TiO_2$ Core-Shell Nanorods with Controllable Shell Thickness and Enhanced Photocatalytic Activity under Visible Light Irradiation," Appl. Sur. Sci., 349 279-86 (2015).
  7. X. L. Zhang, Y. H. Tang, Y. Li, Y. Wang, X. N. Liu, C. B. Liu, and S. L. Luo, "Reduced Graphene Oxide and PbS Nanoparticles Co-Modified $TiO_2$ Nanotube Arrays as a Recyclable and Stable Photocatalyst for Efficient Degradation of Pentachlorophenol," Appl. Catal. A: Gen., 457 78-84 (2013).
  8. Q. Shen, D. Arae, and T. Toyoda, "Photosensitization of Nanostructured $TiO_2$ with CdSe Quantum Dots: Effects of Microstructure and Electron Transport in $TiO_2$ Substrates," J. Photochem. Photobiol. A, 164 [1-3] 75-80 (2004).
  9. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, "Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic $TiO_2$ Films," J. Am. Chem. Soc., 128 [7] 2385-93 (2006).
  10. O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, "An X-ray Computed Tomography Imaging Agent Based on Long-Circulating Bismuth Sulphide Nanoparticles," Nat. Mater., 5 118-22 (2006).
  11. H. Yu, J. Huang, H. Zhang, Q. Zhao, and X. Zhong, "Nanostructure and Charge Transfer in $Bi_2S_3$-$TiO_2$ Heterostructures," Nanotechnology, 25 [21] 215702 (2014).
  12. Y. Bessekhouad, D. Robert, and J. V. Weber, "$Bi_2S_3$/$TiO_2$ and CdS/$TiO_2$ Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant," J. Photochem. Photobio. A, 163 [3] 569-80 (2004).
  13. M. Salavati-Niasari, G. Hosseinzadeh, and F. Davar, "Synthesis of Lanthanum Carbonate Nanoparticles via Sonochemical Method for Preparation of Lanthanum Hydroxide and Lanthanum Oxide Nanoparticles," J. Alloy Compd., 509 [1] 134-40 (2011).
  14. M. Esmaeili-Zare, M. Salavati-Niasari, and A. Sobhani, "Simple Sonochemical Synthesis and Characterization of HgSe Nanoparticles," Ultrason. Sonochem., 19 [5] 1079-86 (2012).
  15. H. Wang, J. J. Zhu, J. M. Zhu, and H. Y. Chen, "Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods," J. Phys. Chem. B, 106 [15] 3848-54 (2002).
  16. J. Wang, Y. W. Guo, B. Liu, X. D. Jin, L. J. Liu, R. Xu, Y. M. Kong, and B. X. Wang, "Detection and Analysis of Reactive Oxygen Species (ROS) Generated by Nano-Sized $TiO_2$ Powder under Ultrasonic Irradiation and Application in Sonocatalytic Degradation of Organic Dyes," Ultrason. Sonochem., 18 [1] 177-83 (2011).
  17. L. Zhu, G. Trisha, C. Y. Park, Z. D. Meng, and W. C. Oh, "Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-$TiO_2$ Composites Synthesized by an Ultrasonic-Assisted Method," Chin. J. Catal., 33 [7-8] 1276-83 (2012).
  18. M. E. Simonsen, Z. S. Li, and E. G. Sogaard, "Influence of the OH Groups on the Photocatalytic Activity and Photoinduced Hydrophilicity of Microwave Assisted Sol-Gel $TiO_2$ Film," Appl. Surf. Sci., 255 8054-62 (2009).
  19. Y. Y. Zhao, K. Ting, E. Chua, C. K. Gan, J. Zhang, B. Peng, Z. P. Peng, and Q. H. Xiong, "Phonons in $Bi_2S_3$ Nanostructures: Raman Scattering and First-Principles Studies," Phys. Rev. B, 84 [20] 205330 (2011).
  20. X. W. Zhang, M. H. Zhou, and L. C. Lei, "Preparation of Photocatalytic $TiO_2$ Coatings of Nanosized Particles on Activated Carbon by AP-MOCVD," Carbon, 43 [8] 1700-8 (2005).
  21. D. W. Kim, D. S. Kim, Y. G Kim, Y. C. Kim, and S. G. Oh, "Preparation of Hard Agglomerates Free and Weakly Agglomerated Antimony Doped Tin Oxide (ATO) Nanoparticles by Coprecipitation Reaction in Methanol Reaction Medium," Mater. Chem. Phys., 97 452-57 (2006).
  22. K. K. Akurati, A. Vital, J. P. Dellemann, K. M. Michalow, D. Ferri, T. Graule, and A. Baiker, "Flame-Made $WO_3$/$TiO_2$ Nanoparticles: Relation between Surface Acidity, Structure and Photocatalytic Activity," Appl. Catal. B: Environ., 79 [1] 53-62 (2008).
  23. L. Zhu, S. B. Jo, S. Ye, K. Ullah, Z. D. Meng, and W. C. Oh, "A Green and Direct Synthesis of Photosensitized $CoS_2$-Graphene/$TiO_2$ Hybrid with High Photocatalytic Performance," J. Ind. Eng. Chem., 22 264-71 (2015).
  24. L. Zhu, Z. D. Meng, and W. C. Oh, "MWCNT-Based $Ag_2S$-$TiO_2$ Nanocomposites Photocatalyst: Ultrasound-Assisted Synthesis, Characterization, and Enhanced Catalytic Efficiency," J. Nanomater., 2012 1-10 (2012).
  25. P. Pusit, K. Suchanya, P. Ratchadaporn, S. Supaporn, and P. Sukon, "Preparation and Characterization of $BiVO_4$ Powder by the Sol-Gel Method," Ferroelectrics., 456 45-54 (2013).
  26. K. John, D. T. Manolis, D. P. George, N. A. Mariza, S. T. Kostas, G. Sofia, B. Kyriakos, K. Christos, O. Michael, and L. Alexis, "Highly Active Catalysts for the Photooxidation of Organic Compounds by Deposition of [60] Fullerene onto the MCM-41 Surface: A Green Approach for the Synthesis of Fine Chemicals," Appl. Catal., B, 117-118 36-48 (2012).
  27. Z. D. Meng, L. Zhu, K. Ullah, S. Ye, and W.C. Oh, "Detection of Oxygen Species Generated by $WO_3$ Modification Fullerene/$TiO_2$ in the Degradation of 1,5-diphenyl Carbazide," Mater. Res. Bull., 56 45-53 (2014).
  28. X. D. Yu, Q. Y. Wu, S. C. Jiang, and Y. H. Guo, "Nanoscale ZnS/$TiO_2$ Composites: Preparation, Characterization, and Visible-Light Photocatalytic Activity," Mater. Charact., 57 [4-5] 333-41 (2006).
  29. F. J. Zhang, J. Liu, M. L. Chen, and W. C. Oh, "Photo-Electrocatalytic Degradation of Dyes in Aqueous Solution Using CNT/$TiO_2$ Electrode," J. Korean Ceram. Soc., 46 [3] 263-70 (2009).
  30. H. Li, B. Zhu, Y. Feng, S. Wang, S. Zhang, and W. Huang, "Synthesis, Characterization of $TiO_2$ Nanotubes-Supported MS ($TiO_2$NTs@MS, M=Cd, Zn) and their Photocatalytic Activity," J. Solid. State. Chem., 180 [7] 2136-42 (2007).
  31. Y. Xie, S. H. Heo, Y. N. Kim, S. H. Yoo, and S. O. Cho, "Improved Conversion Efficiency of CdS Quantum Dots-Sensitized $TiO_2$ Nanotube Array Using ZnO Energy Barrier Layer," Nanotechnology, 22 [1] 015702 (2010).
  32. O. K. Dalrymple, E. Stefanakos, M. A. Trotz, and D. Y. Goswami, "A Review of the Mechanisms and Modeling of Photocatalytic Disinfection," Appl. Catal. B: Environ., 98 [1-2] 27-38 (2010).

Cited by

  1. Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response vol.53, pp.4, 2016,
  2. Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst vol.55, pp.3, 2018,