DOI QR코드

DOI QR Code

Sensorless IPMSM Control Based on an Extended Nonlinear Observer with Rotational Inertia Adjustment and Equivalent Flux Error Compensation

  • Mao, Yongle (College of Electrical Engineering, Zhejiang University) ;
  • Yang, Jiaqiang (College of Electrical Engineering, Zhejiang University) ;
  • Yin, Dejun (School of Mechanical Engineering, Nanjing University of Science and Technology) ;
  • Chen, Yangsheng (College of Electrical Engineering, Zhejiang University)
  • Received : 2016.03.04
  • Accepted : 2016.06.14
  • Published : 2016.11.20

Abstract

Mechanical and electrical parameter uncertainties cause dynamic and static estimation errors of the rotor speed and position, resulting in performance deterioration of sensorless control systems. This paper applies an extended nonlinear observer to interior permanent magnet synchronous motors (IPMSM) for the simultaneous estimation of the rotor speed and position. Two compensation methods are proposed to improve the observer performance against parameter uncertainties: an on-line rotational inertia adjustment approach that employs the gradient descent algorithm to suppress dynamic estimation errors, and an equivalent flux error compensation approach to eliminate static estimation errors caused by inaccurate electrical parameters. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

Acknowledgement

Supported by : Natural Science Foundation of Zhejiang Province

References

  1. G. Pellegrino, P. Guglielmi, and A. Vagati, "Design tradeoffs between constant power speed range, uncontrolled generator operation, and rated current of IPM motor drives," IEEE Trans. Ind. Appl., Vol. 47, No. 5, pp. 1995-2003, Sep./Oct. 2011. https://doi.org/10.1109/TIA.2011.2161429
  2. D. Yin, S. Oh, and Y. Hori. "a novel traction control for EV Based on maximum transmissible torque estimation," IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2086-2094, Jun. 2009. https://doi.org/10.1109/TIE.2009.2016507
  3. S. Kim, J. Ha, and S. Sul, "PWM switching frequency signal injection sensorless method in IPMSM," IEEE Trans. Ind. Appl., Vol. 48 No. 5, pp. 1576-1587, Sep./Oct. 2012. https://doi.org/10.1109/TIA.2012.2210175
  4. KG. Lee, JS. Lee, and KB. Lee, "Wide-range sensorless control for SPMSM using an improved full-order flux observer," Journal of Power Electronics, Vol. 15, No. 3, pp. 721-729, May 2015. https://doi.org/10.6113/JPE.2015.15.3.721
  5. Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, "Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification," IEEE Trans. Ind. Appl., Vol. 47, No. 2, pp. 798-804, Mar./Apr. 2011. https://doi.org/10.1109/TIA.2010.2101994
  6. D. Paulus, J. Stumper, and R. Kennel, "Sensorless control of synchronous machines based on direct speed and position estimation in polar stator-current coordinates," IEEE Trans. Power Electron., Vol. 28 No. 5, pp. 2503-2513, May 2012. https://doi.org/10.1109/TPEL.2012.2211384
  7. P. Kshirsagar, R. Burgos, J. Jang, A. Lidozzi, F. Wang, D. Boroyevich, and S. Sul, "Implementation and sensorless vector-control design and tuning strategy for SMPM machines in fan-type applications,". IEEE Trans. Ind. Appl., Vol. 48, No. 6, pp. 2402-2413, Nov./Dec. 2012. https://doi.org/10.1109/TIA.2012.2227135
  8. B. Nahid-Mobarakeh, F. Meibody-Tabar, and F. Sargos, "Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities," IEEE Trans. Ind. Appl., Vol. 43, No. 2 pp. 485-494, Mar./Apr. 2007. https://doi.org/10.1109/TIA.2006.889826
  9. J. Dominguez, A. Navarrete, M. Meza, A. Loukianov, and J. Canedo, "Digital sliding-mode sensorless control for surface-mounted PMSM," IEEE Trans. Ind. Informat., Vol. 10, No. 1, pp. 137-151, Feb. 2014. https://doi.org/10.1109/TII.2013.2262280
  10. T. Bernardes, V. Montagner, H. Grundling, and H. Pinheiro, "Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine," IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1679-1691, Apr. 2014. https://doi.org/10.1109/TIE.2013.2267700
  11. G. Zhang, G. Wang, D. Xu, and N. Zhao, "ADALINE-network-based PLL for position sensorless interior permanent magnet synchronous motor drives." IEEE Trans. Ind. Electron., Vol. 31, No. 2, pp. 1450-1460, Feb. 2016.
  12. Y. Fan, L. Zhang, M. Cheng, and K. Chau, "Sensorless SVPWM-FADTC of a new flux-modulated permanent-magnet wheel motor based on a wide-speed sliding mode observer," IEEE Trans. Ind. Electron., Vol. 62, No. 5, pp. 3143-3151, May 2015. https://doi.org/10.1109/TIE.2014.2376879
  13. L. Idkhajine, E. Monmasson, and A. Maalouf, "Fully FPGA-based sensorless control for synchronous AC drive using an extended Kalman filter," IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3908-3918, Oct. 2012. https://doi.org/10.1109/TIE.2012.2189533
  14. S. Bolognani, L. Tubiana, and M. Zigliotto, "EKF-based sensorless IPM synchronous motor drive for flux-weakening applications," IEEE Trans. Ind. Appl., Vol. 39, No. 3 pp. 768-775, May/Jun. 2003. https://doi.org/10.1109/TIA.2003.810666
  15. Y. Shi, K. Sun, L. Huang, and Y. Li, "Online identification of permanent magnet flux based on extended Kalman filter for IPMSM drive with position sensorless control," IEEE Trans. Ind. Electron., Vol. 59, No.11, pp. 4169-4178, Nov. 2012. https://doi.org/10.1109/TIE.2011.2168792
  16. M. Rashed, P. F. A. MacConnell, A. F. Stronach, and P. Acarnley, "Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation," IEEE Trans. Ind. Electron., Vol. 54, No. 3, pp. 1664-1675, Jun. 2007. https://doi.org/10.1109/TIE.2007.895136
  17. M. Hamida, J. Leon, A. Glumineau, and R. Boisliveau, "An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification." IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 739-748, Feb. 2013. https://doi.org/10.1109/TIE.2012.2206355
  18. G. Zhu, A. Kaddouri, L. A. Dessaint, and O. Akhrif, "A nonlinear state observer for the sensorless control of a permanent-magnet AC machine," IEEE Trans. Ind. Electron., Vol. 48, No. 6, pp. 1098-1108, Dec. 2001. https://doi.org/10.1109/41.969388
  19. J. A. Solsona, M. I. Valla, and C. Muravchik, "Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation," IEEE Trans. Energy Convers., Vol. 15, No. 2, pp. 163-168, Jun. 2000. https://doi.org/10.1109/60.866994
  20. G. Bisheimer, M. O. Sonnaillon, C. H. De Angelo, J. A. Solsona, and G. O. Garcia, "Full speed range permanent magnet synchronous motor control without mechanical sensors," IET Electr. Power Appl., Vol. 4, No. 1, pp. 35-44, 2010. https://doi.org/10.1049/iet-epa.2008.0187
  21. I. Boldea, M. C. Paicu, and G. D. Andreescu, "Active flux concept for motion-sensorless unified AC drives," IEEE Trans. Power Electron., Vol. 23, No. 5, pp. 2612-2618, Sep. 2008. https://doi.org/10.1109/TPEL.2008.2002394
  22. S. Morimoto, M. Sanada, and Y. Takeda, "Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives," IEEE Trans. Ind. Appl., Vol. 30, No. 6, pp. 1632-1637, Nov./Dec. 1994. https://doi.org/10.1109/TIA.1994.350318