DOI QR코드

DOI QR Code

코아 가교 양친성 고분자 나노입자를 이용한 고함량 유용 약물 담지 고분자 나노입자 제조

김나혜;김주영
Kim, Nahae;Kim, Juyoung

  • 투고 : 2015.08.30
  • 심사 : 2015.11.19
  • 발행 : 2016.02.10

초록

본 연구에서는 반응성 비닐기를 가지고 있는 반응성 양친성 고분자 전구체(Reactive Amphiphilic Reactive Polymer Precursor) (RARP)를 이용하여 제조된 소수성 세그먼트들이 가교된 코아 가교 양친성 고분자(Core-crosslinked Amphiphilic Polymer) (CCAP) 나노입자와 나노침전법을 사용하여서 소수성 유용물질을 고함량으로 담지할 수 있는 새로운 공정을 제안하였다. 극성이 각기 다른 유기용매(에탄올, 아세톤, 테트라하이드로퓨란(THF))들과 소수성 세그먼트 분자량이 다른 CCAP를 사용하여서, 모델 유용 약물인 ${\alpha}$-tocopherol의 담지 효율, 담지량 및 약물 담지 나노입자의 크기와 안정성 변화를 조사하였다. 소수성 세그먼트 분자량이 큰 CCAP와 소수성 용매인 THF를 용매로 사용한 경우에 가장 높은 유용 약물 담지량, 담지 효율을 나타내는 안정한 나노입자가 형성이 되었다. 즉 CCAP 나노입자들의 물리적 화학적으로 견고한 나노 구조로 인해서 33 wt%의 높은 담지량과 97% 이상의 담지 효율을 가지면서 물속에서 70 nm의 크기의 안정한 유용 약물 담지 고분자 나노입자를 제조할 수 있었다.

키워드

amphiphilic polymer;nanoparticles;${\alpha}$-tocopherol;nano-encapsulation;nanoprecipitation

참고문헌

  1. C. P. Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine, 2, 8-21 (2006).
  2. L. N. Bell, Stability testing of nutraceuticals and functional foods, In: Handbook of nutraceuticls and functional foods, Wildman REC (ed), CRC Press, New York, 501 (2001).
  3. R. C. Metha, B. C. Thanoo, and P. P. Deluca, Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide), J. Controlled. Release, 41, 249-257 (1996). https://doi.org/10.1016/0168-3659(96)01332-6
  4. R. Brigelius-Flohe and M. G. Traber, Vitamin E: function and metabolism, FASEB Journal, 13, 1145-1155 (1999). https://doi.org/10.1096/fasebj.13.10.1145
  5. S. H. Yoo, Y. B. Song, P. S. Chang, and H. G. Lee, Microencapsulation of $\alpha$-tocopherol using sodium alginate and its controlled release properties, Int. J. Biol. Macromol., 38, 25-30 (2006). https://doi.org/10.1016/j.ijbiomac.2005.12.013
  6. K. A. Jhonson, Preparation of peptide and protein powders for inhalation, Adv. Drug Deliv. Rev., 26, 3-15 (1997). https://doi.org/10.1016/S0169-409X(97)00506-1
  7. S. J. Park, Y. J. Yang, J. R. Lee, and H. B. Lee, Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Erythromycin by Emulsion Solvent Evaporation Technique, Polymer(Korea), 26, 326-334 (2002).
  8. B. O'Donnell and J. W. McGinity, Preparation of microspheres by the solvent evaporation technique, Drug Deliv. Rev., 28, 25-42 (1997). https://doi.org/10.1016/S0169-409X(97)00049-5
  9. S. Takada, Y. Yamagata, M. Misaki, K. Taira, and T. Kurokawa, Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique, J. Controlled Release, 88, 229-242 (2003). https://doi.org/10.1016/S0168-3659(02)00494-7
  10. U. Bilati, E. Allemann, and E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci., 24, 67-75 (2005). https://doi.org/10.1016/j.ejps.2004.09.011
  11. D. Q. Guerrero, E. Allemann, H. Fessi, and E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from performed polymers, Drug Dev. Ind. Pharm., 24, 1113-1128 (1998). https://doi.org/10.3109/03639049809108571
  12. H. S. Yoo, H. K. Choi, and T. G. Park, Protein-fatty acid complex for enhanced loading and stability within biodegradable nanoparticles, J. Pharm. Sci., 90, 194-201 (2001). https://doi.org/10.1002/1520-6017(200102)90:2<194::AID-JPS10>3.0.CO;2-Q
  13. U. Edlund and A.-C. Albertsson, Degradable polymer microspheres for controlled drug delivery, Albertsson, A.-C.(Ed), 157, 67, Degradable Alphatic polyesters, Advances in Polymer Science, Springer-Verlag, Berlin (2002).
  14. N. B. Viswanathan, S. S. Patil, J. K. Pandit, A. K. Lele, M. G. Kulkarni, and R. A. J. Mashelkar, Morphological changes is degrading PLGA and PLA microspheres: implications for the design of controlled release system, J. Microencapsul., 18, 783-800 (2001). https://doi.org/10.1080/02652040110065440
  15. J. S. Chawla and M. M. Amiji, Int., Biodegradable poly($\varepsilon$ -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, J. Pharm., 249, 127-138 (2002).
  16. C. R. Miller, R. Vogel, P. P. T. Surawski, S. R. Corrie, A. Ruhmann, and M. Trau, Biomolecular screening with novel organosilica microspheres, Chem. Commun., 14, 4783-4785 (2005).
  17. Y. Yang, C. Hua, and C. M. Dong, Synthesis, Self-Assembly, and In Vitro Doxorubicin Release Behavior of Dendron-like/Linear/ Dendron-like Poly($\varepsilon$-caprolactone)-b-Poly(ethylene glycol)-b-Poly ($\varepsilon$-caprolactone) Triblock Copolymers, Biomacromolecules, 10, 2310-2318 (2009). https://doi.org/10.1021/bm900497z
  18. E. Chiellini, E. E. Chiellini, F. Chiellini, and R. Solaro, Targeted Administration of Proteic Drugs. I. Preparation of Polymeric Nanoparticles, J. Bioact. Compat. Polym., 16, 441-465 (2001). https://doi.org/10.1106/6CFL-4E8A-L7XR-MUF7
  19. A. Rosler, G. W. M. Vandermeulen, and H. A. Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug Delivery Rev., 53, 95-108 (2001). https://doi.org/10.1016/S0169-409X(01)00222-8
  20. K. Letchford and H. Burt, Eur., A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes, J. Pharm. Biopharm., 65(3), 259-269 (2007). https://doi.org/10.1016/j.ejpb.2006.11.009
  21. F. Quaglia, L. Ostacolo, G. De Rosa, M. I. La Rotonda, M. Ammendola, G. Nese, G. Maglio, R. Palumbo, and C. Vauthier, Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers, Int. J. Pharm., 324(1), 56-66 (2006). https://doi.org/10.1016/j.ijpharm.2006.07.020
  22. G. A. Husseini and W. G. Pitt, Micelles and nanoparticles for ultrasonic drug and gene delivery, Adv. Drug Delivery Rev., 60, 1137-1152 (2008). https://doi.org/10.1016/j.addr.2008.03.008
  23. J. X. Zhang, K. Ellsworth, and P. X. Ma, Hydrophobic pharmaceuticals mediated self-assembly of $\beta$-cyclodextrin containing hydrophilic copolymers: Novel chemical responsive nano-vehicles for drug delivery, J. Controlled Release, 145, 116-123 (2010). https://doi.org/10.1016/j.jconrel.2010.04.019
  24. P. J. Gandhi and Z. V. P. Murthy, Solubility and Crystal Size of Sirolimus in Different Organic Solvents, J. Chem. Eng. Data, 55, 5050-5054 (2010). https://doi.org/10.1021/je100626x
  25. L. Philippe, L. Sylviane, B. Amelie, G. Ruxandra, R. Wouter, B. Gillian, and V. Christine, Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation, Int. J. Pharm., 344, 33-43 (2007). https://doi.org/10.1016/j.ijpharm.2007.05.054
  26. J. Y. Kim, D. H. Shin, K. J. Ihn, and C. W. Nam, Synthesis of Magnetic Nanocomposite Based on Amphiphilic Polyurethane Network Films, Macromol. Chem. Phys., 203, 2454-2462 (2002). https://doi.org/10.1002/macp.200290026
  27. J. Y. Kim, D. H. Shin, and K. J. Ihn, Synthesis of Poly(urethane acrylate-co-styrene) Films Containing Silver Nanoparticles by a Simultaneous Copolymerization/in situ Electron Transfer Reaction, Macromol. Chem. Phy., 206, 794-801 (2005). https://doi.org/10.1002/macp.200400467
  28. J. Y. Kim, H. M. Kim, D. H. Shin, and K. J. Ihn, Synthesis of CdS Nanoparticles Dispersed Within Poly(urethane acrylate-costyrene) Films Using an Amphiphilic Urethane Acrylate Nonionomer, Macromol. Chem. Phys., 207, 925-932 (2006). https://doi.org/10.1002/macp.200600031
  29. J. Maia and M. Santana, The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process, Brazilian J. Chem. Eng., 21, 1-12 (2004). https://doi.org/10.1590/S0104-66322004000100002
  30. J. Y. Kim, J. Wainaina, J. H. Kim, and J. K. Shim, Use of Polymer Nanoparticles as Functional Nano-Absorbents for Low- Molecular Weight Hydrophobic Pollutants, J. Nanosci. Nanotechnol., 7, 4000-4004 (2007). https://doi.org/10.1166/jnn.2007.092
  31. J. Y. Kim, J. Wainaina, and J. S. Na, Synthesis of amphiphilic silica/ polymer composite nanoparticles as water-dispersible nano-absorbent for hydrophobic pollutants, J. Ind. Eng. Chem., 17, 681-690 (2011). https://doi.org/10.1016/j.jiec.2010.10.013
  32. I. G. Zigoneanu, C. E. Astete, and C. M. Sabliov, Nanoparticles with entrapped $\alpha$-tocopherol: synthesis, characterization, and controlled release, Nanotech., 19, 105606-105613 (2008). https://doi.org/10.1088/0957-4484/19/10/105606
  33. T. B. Shea, D. Ortiz, R. J. Nicolosi, R. Kumar, and A. C. Watterson, Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta, J. of Alzh. Dis., 7, 297-301 (2005). https://doi.org/10.3233/JAD-2005-7405
  34. Y. J. Byun, J. B. Hwang, S. H. Bang, D. Darby, K. Cooksey, P. L. Dawson, H. J. Park, and S. Whiteside, Formulation and characterization of $\alpha$-tocopherol loaded poly $\varepsilon$-caprolactone (PCL) nanoparticles, LWT-Food Sci. and Tech., 44, 24-28 (2011). https://doi.org/10.1016/j.lwt.2010.06.032

과제정보

연구 과제 주관 기관 : 강원대학교