DOI QR코드

DOI QR Code

Analysis of Pyrethroid Resistance Allele in Malaria Vector Anopheles sinensis from Malaria High-risk Area

말라리아 위험지역에서 채집된 말라리아 매개모기 Anopheles sinensis의 피레스로이드계 저항성 대립형질 분석

  • Choi, Kwang Shik (School of Life Science, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hwang, Do-Un (School of Life Science, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Heung-Chul (5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade) ;
  • Chang, Kyu-Sik (Division of Medical Entomology, Korea Center for Disease Control and Prevention) ;
  • Jung, Hee-Young (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • 최광식 (경북대학교 자연과학대학 생명과학부) ;
  • 이승열 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 황도운 (경북대학교 자연과학대학 생명과학부) ;
  • 김흥철 (주한 미8군 65의무여단 168대대, 5의무대) ;
  • 장규식 (질병관리본부 질병매개곤충과) ;
  • 정희영 (경북대학교 농업생명과학대학 응용생명과학부)
  • Received : 2016.10.08
  • Accepted : 2016.11.29
  • Published : 2016.12.31

Abstract

Malaria is mainly transmitted by Anopheles sinensis which is dominant species in malaria high-risk area, northern part of Gyeonggi province in Korea. Pyrethroid insecticide is used for malaria vector, An. sinensis in Korea and the previous investigation consistently reported insecticide resistance from the vector. This study investigated insecticide susceptible and resistant alleles from An. sinensis and the status of malaria vector control in malaria high-risk area. For the study, An. sinensis collected from Paju, Gimpo and Ganghwa were sequenced for kdr detection. In Paju, there was no homozygous susceptibility and all of tested samples had homozygous or heterozygous resistance. There were 6.7% for susceptible homozygosity and 93.3% for resistant homozygosity or heterozygosity in Gimpo. Furthermore, the percentages of homozygous susceptibility and homozygous or heterozygous resistance in Ganghwa were 5.7% and 94.3% respectively. The results showed that the frequency of the insecticide resistance from An. sinensis in malaria high-risk area were increased much more than the previous investigation. Hence, this study suggests that malaria vector control programs should have to be prepared for the management of pyrethroid insecticide resistance.

Acknowledgement

Grant : BK21플러스

Supported by : 경북대학교

References

  1. Chang, K. S., J. S. Jung, C. Park, D. K. Lee and E. Shin (2009) Insecticide susceptibility and resistance of larvae of the Anopheles sinensis group (Diptera: Culicidae) from Paju, Republic of Korea. Entomol. Res. 39:196-200. https://doi.org/10.1111/j.1748-5967.2009.00218.x
  2. Chang, K.-S., D.-H. Yoo, E.-H. Shin, W.-G. Lee, J. Y. Roh and M. Y. Park (2013) Susceptibility and resistance of field populations of Anopheles sinensis (Diptera: Culicidae) collected from Paju to 13 insecticides. Osong Public Health Res. Perspect. 4:76-80. https://doi.org/10.1016/j.phrp.2013.02.001
  3. Chang, K. S., D.-H. Yoo, Y. R. Ju, W. G. Lee, J. Y. Roh, H.-C. Kim, T. A. Klein and E.-H. Shin (2016) Distribution of malaria vectors and incidence of vivax malaria at Korean army installations near the demilitarized zone, Republic of Korea. Malar. J. 15:259. https://doi.org/10.1186/s12936-016-1301-y
  4. Diabate, A., C. Brengues, T. Baldet, K. R. Dabir, J. M. Hougard, M. Akogbeto, P. Kengne, F. Simard, P. Guillet, J. Hemingway and F. Chandre (2004) The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop. Med. Int. Health 9:1267-1273. https://doi.org/10.1111/j.1365-3156.2004.01336.x
  5. Gayathri, V. and P. B. Murthy (2006) Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. J. Am. Mosq. Control Assoc. 22:678-688. https://doi.org/10.2987/8756-971X(2006)22[678:RSTDAK]2.0.CO;2
  6. Hall, T. A. (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  7. Hemingway, J., N. J. Hawkes, L. McCarroll and H. Ranson (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34:653-665. https://doi.org/10.1016/j.ibmb.2004.03.018
  8. Hoti, S. L., V. Vasuki, P. Jambulingam and S. S. Sahu (2006) kdr allele-based PCR assay for detection of resistance to DDT in Anopheles culicifacies sensu lato Giles population from Malkangiri District, Orissa, India. Curr. Sci. 91:658-661.
  9. Hunt, R. H., G. Fuseini, S. Knowles, J. Stiles-Ocran, R. Verster, M. L. Kaiser, K. S. Choi, L. L. Koekemoer and M. Coetzee (2011) Insecticide resistance in malaria vector mosquitoes at four localities in Ghana, West Africa. Parasite. Vector. 4:107. https://doi.org/10.1186/1756-3305-4-107
  10. Joshi, D., W. Choochote, M. H. Park, J. Y. Kim, T. S. Kim, W. Suwonkerd and G. S. Min (2009) The susceptibility of Anopheles lesteri to infection with Korean strain of Plasmodium vivax. Malar. J. 8:42. https://doi.org/10.1186/1475-2875-8-42
  11. Joshi, D., M. H. Park, A. Saeung, W. Choochote and G. S. Min (2010) Multiplex assay to identify Korean vectors of malaria. Mol. Ecol. Resour. 10:748-750. https://doi.org/10.1111/j.1755-0998.2010.02835.x
  12. Joshi, D., J. Y. Kim, W. Choochote, M. H. Park and G. S. Min (2011) Preliminary vivax malaria vector competence for three members of the Anopheles Hyrcanus group in the Republic of Korea. J. Am. Mosq. Control Assoc. 27:312-314. https://doi.org/10.2987/10-6086.1
  13. Kang, S., J. Jung, S. Lee, H. Hwang and W. Kim (2012) The polymorphism and the geographical distribution of the knockdown resistance (kdr) of Anopheles sinensis in the Republic of Korea. Malar. J. 11:151. https://doi.org/10.1186/1475-2875-11-151
  14. Kim, H., J. H. Baek, W. J. Lee and S. H. Lee (2007) Frequency detection of pyrethroid resistance allele in Anopheles sinensis populations by real-time PCR amplification of specific allele (rtPASA). Pestic. Biochem. Phys. 87:54-61. https://doi.org/10.1016/j.pestbp.2006.06.009
  15. Korea Centers for Disease Control and Prevention (KCDC) (2012) A Guideline of Malaria Management, Republic of Korea. Korea Center for Disease Control and Prevention 49-70.
  16. Korea Center for Disease Control and Prevention (KCDC) (2015) A Guideline of Malaria Management, Republic of Korea. Korea Center for Disease Control and Prevention 49-72.
  17. Lee, W. J., T. A. Klein, H. C. Kim, Y. M. Choi, S. H. Yoon, K. S. Chang, S. T. Chong, I. Y. Lee, J. W. Jones, J. S. Jacobs, J. Sattabongkot and J. S. Park (2007) Anopheles kleini, Anopheles pullus, and Anopheles sinensis: potential vectors of Plasmodium vivax in the Republic of Korea. J. Med. Entomol. 44: 1086-1090.
  18. Li, C., J. S. Lee, J. L. Groebner, H. C. Kim, T. A. Klein, M. L. O'guinn and R. C. Wilkerson (2005) A newly recognized species in the Anopheles Hyrcanus Group and molecular identification of related species from the Republic of South Korea (Diptera: Culicidae). Zootaxa 939:1-8. https://doi.org/10.11646/zootaxa.939.1.1
  19. Mnzava, A. P., T. B. Knox, E. A. Temu, A. Trett, C. Fornadel, J. Hemingway and M. Renshaw (2015) Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar. J. 14:173. https://doi.org/10.1186/s12936-015-0693-4
  20. Park, J. W., T. A. Klein, H. C. Lee, L. A. Pacha, S. H. Ryu, J. S. Yeom, S. H. Moon, T. S. Kim, J. Y. Chai, M. D. Oh and K. W. Choe (2003) Vivax malaria: a continuing health threat to the Republic of Korea. Am. J. Trop. Med. Hyg. 69:159-167.
  21. Ree, H. I. (2005) Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. Korean J. Parasitol. 43:75-92. https://doi.org/10.3347/kjp.2005.43.3.75
  22. Rueda, L. M., C. Li, H. C. Kim, T. A. Klein, D. H. Foley and R. C. Wilkerson (2010) Anopheles belenrae, a potential vector of Plasmodium vivax in the Republic of Korea. J. Am. Mosq. Control Assoc. 26:430-432. https://doi.org/10.2987/10-6057.1
  23. Wang, D., Z. Xia, S. Zhou, X. Zhou, R. Wang and Q. Zhang (2013) A potential threat to malaria elimination: extensive deltamethrin and DDT resistance to Anopheles sinensis from the malaria-endemic areas in China. Malar. J. 12:164. https://doi.org/10.1186/1475-2875-12-164
  24. World Health Organization (1981) Synopsis of the world malaria situation in 1979. The Weekly Epidemiological Record 56:145-149.
  25. World Health Organization (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12 Geneva, Switzerland.
  26. World Health Organization (2012) Global Plan for Insecticide Resistance Management in Malaria Vectors. Geneva, Switzerland: World Health Organization.
  27. World Health Organization (2014) Global Malaria Programme, World malaria report. Geneva: World Health Organization.
  28. World Health Organization (2015) Global Malaria Programme, World malaria report. Geneva: World Health Organization.