DOI QR코드

DOI QR Code

Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti

Cho, Hyun ji;Hong, Seong Won;Kim, Hyun-ju;Kwak, Youn-Sig

  • Received : 2015.09.04
  • Accepted : 2015.10.29
  • Published : 2016.02.01

Abstract

Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B.cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti.

Keywords

grafted cactus;PCR detection;quarantine pathogen

References

  1. Aguilar, J. C., M. P. Perez-Brena, M. L. Garcia, N. Cruz, D. D. Erdman, and J. E. Echevarria. 2000. Detection and identification of human arainfluenza viruses 1, 2, 3, and 4 in clinical samples of pediatric patients by multiplex reverse transcription- PCR. J. Clin. Microbiol. 38:1191-1195.
  2. Buchman, T. G., M. Rossier, W. G. Merz, and P. Charache. 1990. Detection of surgical pathogens by in vitro DNA amplification. Part I. Rapid identification of Candida albicans by in vitro amplification of a fungus-specific gene. Surgery 108:338-347.
  3. Cruz, M. D. L., Ramirez, F. and Hernandez, H. 1997. DNA isolation and amplification from cacti. Plant Mol. Biol. Rep. 15:319-325. https://doi.org/10.1023/A:1007428818078
  4. Chang, M., Hyun, I. H. and Lee, Y. H. 1998. Bipolaris stem rot of cactus caused by Bipolaris cactivora (Petrak) Alcorn. Korean J. Plant Pathol. 14:661-663.
  5. Choi, M.-O., Kim, S. G., Hyun, I.-H., Kim, J. H., Cho, C.-H., Park, M. S. and Kim, Y. H. 2010. First report of black spot caused by Alternaria alternata on grafted cactus. Plant Pathol. J. 26:80-82. https://doi.org/10.5423/PPJ.2010.26.1.080
  6. Coiras, M. T., P. Perez-Brena, M. L. Garcia, and I. Casas. 2003. Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay. J. Med. Virol. 69:132-144. https://doi.org/10.1002/jmv.10255
  7. Fan, J., K. J. Henrickson, and L. L. Savatski. 1998. Rapid simultaneous diagnosis of infections with respiratory syncytial viruses A and B, influenza viruses A and B, and human parainfluenza virus types 1, 2, and 3 by multiplex quantitative reverse transcription-polymerase chain reaction-enzyme hybridization assay (Hexaplex). Clin. Infect. Dis. 26:1397-1402. https://doi.org/10.1086/516357
  8. Grondahl, B., W. Puppe, A. Hoppe, I. Kuhne, J. A. Weigl, and H. J. Schmitt. 1999. Rapid identification of nine microorganisms causing acute respiratory tract infections by single-tube multiplex reverse transcription-PCR: feasibility study. J. Clin. Microbiol. 37:1-7.
  9. Hameed, A., Iqbal, Z., Asad, S. and Mansoor, S. 2014. Detection of multiple potato viruses in the field suggests synergistic interations among potato viruses in Pakistan. Plant Pathol. J. 30:407-415. https://doi.org/10.5423/PPJ.OA.05.2014.0039
  10. Hyun, I. H., Lee, S. D., Lee, Y. H. and Heo, N. Y. 1998. Mycological characteristics and pathogenicity of Fusarium oxysporum Schlecht. emend. Snyd. & Hans. causing stem rot of cactus. Korean J. Plant Pathol. 14:463-466.
  11. Kim, Y. H., Jun, O. K., Sung, M. J., Shin, J. S., Kim, J. H. and Jeoung, M. I. 2000. Occurrence of Colletotrichm stem rot caused by Glomerella cingulata on graft-cactus in Korea. Plant Pathol. J. 16:242-245.
  12. Kim, J. H., Jeon, Y. H., Kim, S. G. and Kim, Y. H. 2007. First report on bacterial soft rot of graft-cactus Chamaecereus silvestrii caused by Pectobacterium carotovorum subsp. Carotovorum in Korea. Plant Pathol. J. 23:314-317. https://doi.org/10.5423/PPJ.2007.23.4.314
  13. Kan, V. L. 1993. Polymerase chain reaction for the diagnosis of candidemia. J. Infect. Dis. 168:779-783. https://doi.org/10.1093/infdis/168.3.779
  14. Kwak, H.-R., Kim, M.-K., Shin, J.-C., Lee, Y.-J., Seo, J.-K., et al. 2014. The current incidence of viral disease in Korean sweet potatoes and development of multiplex RT-PCR assays for simultaneous detection of eight sweet potato viruses. Plant Pathol. J. 30:416-424. https://doi.org/10.5423/PPJ.OA.04.2014.0029
  15. Liolios, L., A. Jenney, D. Spelman, T. Kotsimbos, M. Catton, and S. Wesselingh. 2001. Comparison of a multiplex reverse transcription-PCR-enzyme hybridization assay with conventional viral culture and immunofluorescence techniques for the detection of seven viral respiratory pathogens. J. Clin. Microbiol. 39:2779-2783. https://doi.org/10.1128/JCM.39.8.2779-2783.2001
  16. Mingzhu Li, Minoru Inada, Hideki Watanabe, Haruhisa Suga, and Koji Kageyama. 2013. Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR. Microbes Environ. 28:195-203. https://doi.org/10.1264/jsme2.ME12177
  17. Song, C. Y., Ahn, D. H., Cho, C. H., Chung, J. W. and Nam, S. Y. 2009a. Exporting promotion strategy of grafted cacti. Flower Res. J. 17:67-73.
  18. Song, C. Y., Ahn, D. H., Kim, Y. S., Park, I. T. and Cho, C. H. 2009b. Export market trends of grafted cacti. Flower Res. J. 17:62-66.
  19. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, eds. by Innis, M.A., Gelfand, D.H., Snisky, J.J., White, T.J., PCR Protocols, p. 315-322.

Cited by

  1. Identification of Colletotrichum species associated with postbloom fruit drop in Brazil through GAPDH sequencing analysis and multiplex PCR vol.147, pp.4, 2017, https://doi.org/10.1007/s10658-016-1038-z
  2. Development of duplex PCR for simultaneous detection of Theileria spp. and Anaplasma spp. in sheep and goats vol.176, 2017, https://doi.org/10.1016/j.exppara.2017.01.011
  3. Epidemiology and Control of Strawberry Bacterial Angular Leaf Spot Disease Caused by Xanthomonas fragariae vol.32, pp.4, 2016, https://doi.org/10.5423/PPJ.OA.01.2016.0007
  4. Investigation of disease occurrences and rapid diagnosis in grafted cactus 2017, https://doi.org/10.1007/s41348-017-0093-9
  5. Multiplex polymerase chain reaction for simultaneous detection and identification of Bursaphelenchus xylophilus, B. mucronatus and B. fraudulentus – three closely related species within the xylophilus group vol.19, pp.9, 2017, https://doi.org/10.1163/15685411-00003110

Acknowledgement

Supported by : Plant Quarantine Agency